List of my Publications

Tuesday, 18 October 2011

La transizione da liquido isotropo a smettico

La transizione da liquido isotropo a smettico

Amelia Carolina Sparavigna
Dipartimento di Fisica
Politecnico di Torino

Breve discussione della transizione di fase diretta dal liquido isotropo alla mesofase smettica, con osservazioni al microscopio polarizzatore.

I cristalli liquidi sono materiali composti di molecole di forma allungata, come bastoncini, oppure discoidale. Essi sono caratterizzati dalla presenza di mesofasi tra la fase liquida isotropa e quella cristallina. Tipiche mesofasi sono la fase nematica e quella smettica. La fase nematica ha i centri delle molecole che assumono posizioni arbitrarie, mentre gli assi delle molecole tendono a orientarsi nella stessa direzione. Nello smettico, le molecole si dispongono con i loro centri su piani definiti. Gli assi delle molecole hanno una direzione specifica rispetto al piano. Se la direzione è perpendicolare al piano, si dice che la fase è smettica A, se invece l’asse è inclinato, la fase è smettica B. La fase smettica è quindi più ordinata della nematica, ma più disordinata di un cristallo. Vi sono alcuni materiali termotropici in cui la fase nematica non c'è, ma si ha solo una fase smettica. Riscaldando o raffreddando il campione, si passa dalla fase smettica a quella liquido o viceversa, saltando la fase nematica.
Vediamo che cosa si può osservare col microscopo polarizzatore, quando si passa della fase liquida ordinaria, dove le molecole sono disordinate sia in posizione sia in orientamento, nella fase liquido-cristallina. La fase liquida ordinaria è detta “liquido isotropo”. Il cristallo liquido è preparato tra due vetrini e posto, all’interno di un termostato, sotto il microscopio, tra i due filtri polarizzatori. Lo spessore del materiale è di pochi micron. Il campione è riscaldato fino a raggiungere la fase liquida ordinaria. Questa fase, se vista al microscopio con i filtri polarizzatori incrociati, appare come un nero uniforme. L’isotropia ottica del materiale permette l’estinzione completa della luce. Se si raffredda il liquido ed esso passa nella fase nematica, si vedono comparire delle bolle colorate. Dove ci sono le bolle, il materiale è già nematico. Le bolle crescono fino a che tutto il materiale è nematico.

  
Transizione da liquido isotropo, che appare nero nella foto, a nematico, che è colorato. Il cristallo liquido è il 12OBAC (alkyloxybenzoic acid).

Il nematico è otticamente anisotropo. Il materiale modifica la luce che polarizzata dal primo filtro del microscopio. Il secondo non riesce più a estinguere tutta la luce. Il materiale appare colorato per via di fenomeni d’interferenza. Cosa si vede quando si passa del liquido isotropo allo smettico? Dato che ci sono diverse fasi smettiche, quello che si vede dipende dalla fase.

Smettico A
Utilizziamo un oxadiazolo, che ha la transizione diretta dalla fase isotropa a quella smettica. Il materiale ha una fase smettica di tipo A. Al microscopio polarizzatore, questo materiale mostra una  fase caratterizzata da domini a ventaglio (in letteratura si trovano definiti come “fan” oppure  “focal-conic”).


Domini “focal-conic” nella fase smettica.

Aumentando la temperatura, portiamo il campione nella fase liquida isotropa. Il campione diventa nero. Cominciamo a raffreddare lentamente il campione per portarlo nella fase smettica. Nel campo visivo del microscopio appaiono i “batonnets”, che cominciamo a crescere nella fase isotropa.


Batonnets della fase smettica che crescono nella fase isotropa (a sinistra). I domini crescono e si uniscono a formare la tessitura focal-conic.

Questi domini crescono e si uniscono insieme fino a formare la tessitura, ossia l’insieme dei domini osservati al microscopio polarizzatore, della fase smettica. I domini sono in questo caso focal-conic.  

Smettico C
La tessitura vista sopra non è l’unica mostrata dalla fase smettica. Prendiamo un altro materiale, anche lui avente la transizione diretta liquido isotropo - smettico.  Il materiale utilizzato è il 16OBAC della famiglia degli acidi ossibenzoici alchilici (alkyloxybenzoic). Il materiale è cristallino fino a 90 °C e poi passa nella fase smettica C.


A sinistra la fase cristallina del  16OBAC; a destra la fase smettica  osservata in riscaldamento dalla fase cristallina.

Alla temperatura di 131 °C diventa un liquido isotropo, non ha quindi fase nematica. Questo è dovuto al fatto che le molecole sono così lunghe da mantenere l'ordine smettico fino ad alta temperatura, vincendo la tendenza al disordine dovuta all'agitazione termica. In raffreddamento, la fase smettica compare dalla fase isotropa: si osservano delle strutture ramificate che compaiono nel campo nero della cella vista tra polarizzatori incrociati.


Ecco come cresca la fase smettica nella fase isotropa.


La crescita della fase smettica  dalla fase isotopa vista ad un ingrandimento maggiore.


La sequenza mostra l'evoluzione della struttura ramificata, quando si abbassa la temperatura (0.5 gradi al minuto).


E’ interessante notare che la fase smettica che si forma in raffreddamento ha una tessitura differente da quella che si osserva in riscaldamento. La tessitura è di tipo schlieren: poiché la fase è smettica, ci sono solo difetti con carica 1. Possiamo quindi distinguerla dalla fase nematica, che è simile, perché questa ha anche i difetti 1/2.


Fase smettica del 16OBAC che si forma in raffreddamento. La tessitura è di tipo schiere, con i soli difetti con carica 1.


Discussione
Il processo di crescita delle mesofasi dalla fase isotropa è un problema interessante e forse poco studiato ancora [1]. Questo processo ha due fasi, quella di nucleazione e quella di accrescimento. Esse sono state ben studiate per i processi di cristallizzazione dal liquido isotropo. Nella fase di nucleazione succede che, all'interno del liquido si creano dei punti in cui la concentrazione locale è maggiore. Questi punti sono chiamati cluster. Crescendo, si creano dei nuclei che rispecchiano fedelmente l'ordine del cristallo. Sono piccoli cristallini di dimensioni microscopiche.
Anche le mesofasi hanno i loro nuclei. Per quanto riguarda i nematici, di solito si osservano delle piccolissime gocce circolari, che si formano nel liquido isotropo e che poi si uniscono a formare la fase nematica. Anche se il nematico è anisotropo come orientazione, è disordinato come posizione. Immaginiamo le molecole del nematico come dei bastoncini. Quando esse sono nella fase liquida isotropa, i loro centri sono disordinati, come anche le loro direzioni. Al decrescere della temperatura, quando il materiale arriva alla transizione di fase, le molecole possono girare i loro assi lunghi senza doversi spostare. Questo può avvenire nello stesso modo in tutte le direzioni dello spazio. Il nucleo di nematico cresce nel liquido isotropo con una simmetria sferica.
Nello smettico invece, l’ordine locale è molto diverso. Ci sono dei piani microscopici, su cui si devono sistemare i centri delle molecole. Le molecole devono orientarsi ma anche spostare i loro centri per formare i piani. I clusters iniziali possiedono quindi una direzione privilegiata, quella perpendicolare ai piano dello smettico. Ecco quindi che possono comparire i nuclei come batonnets.
E’ molto interessante la crescita dello smettico C, che appare come una struttura ramificata. Sicuramente sono necessari ulteriori studi per determinare meglio le caratteristiche dei nuclei.

Riferimenti

[1] I DierkingC Russell, Universal scaling laws for the anisotropic growth of SmA liquid crystal bâtonnets, Physica B: Condensed Matter, Volume 325, January 2003, Pages 281-286.