Showing posts with label Recurrence Plots. Show all posts
Showing posts with label Recurrence Plots. Show all posts

Sunday 8 April 2018

Recurrence Plots of Pulsar Profiles (Philica, 2015)


Recurrence plots of pulsar profiles
Amelia Carolina Sparavigna Polito - Politecnico di Torino [Torino]

Abstract : Pulsars are rotating neutron stars that have an emission of electromagnetic
radiations which is continuous but beamed. Therefore, an observer sees a pulse of
radiation when the beam sweeps across his line-of-sight. Averaging over many pulses,
a pulse profile specific of the observed pulsar is obtained. Here we propose the use of
a recurrence plot for showing it.
This plot can highlight specific behaviours in pulse profiles.


Keywords : Recurrence Plots Pulsars Pulse Profiles
Type de document :
Article dans une revue


Philica, Philica, 2015, pp.533.
  Available at https://hal.archives-ouvertes.fr/hal-01487452/
Domaine :
Planète et Univers [physics] /
Astrophysique [astro-ph] /
Astrophysique stellaire et solaire [astro-ph.SR]

Here the figures of the article





Figure 1: On the left, the plot of 512 ASCII data of the pulse profile
 from PSR J2307+2225 [8].
 On the right, the corresponding recurrence plot.





Figure 2: On the left, the plot of 1024 ASCII data of the pulse profile
 of PSR J2235+1506 [10]. On the right, the corresponding recurrence plot.





Figure 3: On the left, the plot of 1024 ASCII data of the pulse profile
 at high frequency of PSR J1919 [11].
 On the right, the corresponding recurrence plot.





Figure 4: Recurrence plot of Pulsar J2317+1439 [10].
The background is displaying an interesting pattern,
typical of a autoregressive process [7].





Figure 5: PSR J0437-4715 pulse profiles at two different frequencies [14] .
 Note the presence of a double notch.





Figure 6: PSR J2322+2057 pulse profiles at two different frequencies [16].
 Note that we can see two peaks. One is quite faint at the lower frequency,
 but it is visible in the recurrence plot.




References

[1] J.J. Condon and S.M. Ransom, Essential Radio Astronomy, National Radio Astronomy Observatory, retrieved 18 October 2015, http://www.cv.nrao.edu/course/astr534/ERA.shtml

[2] W. Baade and F. Zwicky, On Super-novae, Proceedings of the National Academy of Sciences of the United States of America, vol. 20, no. 5, 1034, p. 254-259.

[3] R. Oppenheimer and G.M. Volkoff, On Massive Neutron Cores, Phys. Rev. 55, 1939, p.374.

[4] F. Pacini, Energy Emission from a Neutron Star, Nature, vol. 216, no. 5115, 1967, p. 567, DOI: 10.1038/216567a0

[5] W.R. Burns and B.G. Clark, Pulsar Search Techniques, Astronomy and Astrophysics, vol. 2, 1969, p. 280-287.

[6] N. Marwan and J. Kurths, Cross Recurrence Plots and Their Applications, in Mathematical Physics Research at the Cutting Edge, C.V. Benton Editor, pp.101-139, Nova Science Publishers, 2004.

[7] A.C. Sparavigna, Recurrence Plots of Exchange Rates of Currencies, International Journal of Sciences, vol. 3, no. 7, 2014, p. 87-95. DOI: 10.18483/ijSci.545

[8] F. Camilo and D.J. Nice, Timing parameters of 29 pulsars, Astrophysical Journal, Part 1, vol. 445, no. 2, 1995, p. 756-761.

[9] E. Kononov, Visual Recurrence Analysis, www.visualization-2002.org/

[10] F. Camilo, D.J. Nice and J.H. Taylor, Discovery of Two Fast-Rotating Pulsars, Astrophysical Journal, Part 2 - Letters, vol. 412, no. 1, p. L37-L40.

[11] J.H. Seiradakis, J.A. Gil, D.A. Graham, A. Jessner, M. Kramer, V.M. Malofeev, W. Sieber and R. Wielebinski, Pulsar Profiles at High-frequencies. 1. The Data, Astronomy and Astrophysics Supplement, v.111, 1995, p.205.

[12] S. Johnston, D.R. Lorimer, P.A. Harrison, et al. Discovery of a Very Bright, Nearby Binary Millisecond Pulsar, Nature, vol. 361, no. 6413. 1993, p. 613–615.

[13] Vv. Aa., Wikipedia, https://en.wikipedia.org/wiki/PSR_J0437-4715

[14] J.F. Bell, M. Bailes, R.N. Manchester, A.G. Lyne, F. Camilo and J.S. Sandhu, Timing Measurements and Their Implications for Four Binary Millisecond Pulsars, Monthly Notices of the Royal Astronomical Society, vol. 286, no. 2, 1997, p. 463-469.

[15] J. Navarro, R.N. Manchester, J.S. Sandhu, S.R. Kulkarni and M. Bailes, Mean Pulse Shape and Polarization of PSR J0437-4715, The Astrophysical Journal, vol. 486, 1997, p. 1019-1025.

[16] I.H. Stairs, E.M. Splaver, S.E. Thorsett, D.J. Nice and J.H. Taylor, A Baseband Recorder for Radio Pulsar Observations, Monthly Notices of the Royal Astronomical Society, vol. 314, no. 3, 1999, p. 459-467.



Wednesday 5 November 2014

Carbon Dioxide Concentration and Emissions in Atmosphere: Trends and Recurrence Plots

The increase of carbon dioxide concentration in atmosphere, due to anthropogenic emissions, is almost generally considered as responsible of global climate changes. We show some data of CO2 concentration and its emission in atmosphere, using the recurrence plots to enhance the visualization of their trends.  See more at: http://www.ijsciences.com/pub/article/582#sthash.L4dBnzsh.dpuf

Data of CO2 concentration in atmosphere, from [1]. The range is from January 1958 to October 2014. In the image we see the recurrence plot. The global annual mean concentration of CO2 in the atmosphere is currently rising at a rate of approximately 2 ppm/year and accelerating [1]. This acceleration is shown by the recurrence plot, where colours are narrowing towards the diagonal line.
[1] Tans, P. & Keeling R. (2014). Trends in atmospheric carbon dioxide, Oceanic & Atmospheric Administration (NOAA). At www.esrl.noaa.gov/ gmd/ ccgg/ trends/


About 1970, the oil production and import of US had a sharp peak (data from Ref.12). Note how the corresponding recurrence plot evidences this peak.
[12] Vv.Aa. (2014). U.S. Energy Information Administration (EIA), at www.eia.gov/petroleum/

 See more at: http://www.ijsciences.com/pub/article/582#sthash.L4dBnzsh.dpuf