Showing posts with label cinematica. Show all posts
Showing posts with label cinematica. Show all posts

Wednesday 10 April 2013

Treasure Map

Long John Silver, a pirate, has buried his treasure on an island with five trees located at the following points: A (30.0 m, –20.0 m), B (60.0 m, 80.0 m), C (–10.0 m, –10.0 m), D (40.0 m, –30.0 m), and E (–70.0 m, 60.0 m). All of the points are measured relative to some origin, as in Figure. Long John’s map instructs you to start at A and move toward B, but cover only 1/2 the distance between A and B. Then move toward C, covering 1/3 the distance between your current location and C. Then move toward D, covering 1/4 the distance between where you are and D. Finally, move toward E, covering 1/5 the distance between you and E, stop, and dig.

A (30.0 m, –20.0 m), B (60.0 m, 80.0 m), C (–10.0 m, –10.0 m)
D (40.0 m, –30.0 m), and E (–70.0 m, 60.0 m).

The intermediate points are F,G,H and I. For each of coordinates x and y:
 F = A + 1/2 (B - A)
 G = F + 1/3 (C - F)
 H= G + 1/4 (D - G)
 I = H + 1/5 (E - H)

Vectors:
F = (30,-20) + 1/2 ((60,80) - (30,-20)) = (30,-20) + 1/2 (30,100) =  (45, 30)

 G = (45,30) + 1/3 ((-10,-10) - (45, 30)) = (45, 30) + 1/3 (-55, -40) =
= (45-55/3,30-40/3)
 
H= ... 

or you can use a program

XA=30.0
YA=-20.0
XB=60.0
YB=80.0
XC=-10.0
YC=-10.0
XD=40.0
YD=-30.0
XE=-70.0
YE=60.0
XF=XA+(XB-XA)/2.
YF=YA+(YB-YA)/2.
XG=XF+(XC-XF)/3.
YG=YF+(YC-YF)/3.
XH=XG+(XD-XG)/4.
YH=YG+(YD-YG)/4.
XI=XH+(XE-XH)/5.
YI=YH+(YE-YH)/5.
print *,XI,YI
output: 10. 16.



Treasure Island is an adventure novel by author Robert Louis Stevenson, narrating a tale of "buccaneers and buried gold". Traditionally considered a coming of age story, it is an adventure tale known for its superb atmosphere, character and action, and also a wry commentary on the ambiguity of morality—as seen in Long John Silver—unusual for children's literature then and now. The influence of Treasure Island on popular perception of pirates is vast, including treasure maps with an 'X', schooners, the Black Spot, tropical islands, and one-legged seamen with parrots on their shoulders.

Velocità e accelerazione in coordinate polari

Velocità e accelerazione in coordinate polari.
  
Abbiamo discusso la velocità e l’accelerazione secondo le coordinate cartesiane ed anche intrinsecamente alla traiettoria. Ora discutiamo come si scrivono utilizzando un riferimento polari.
Immaginiamo di avere una particella che si muove su una certa traiettoria. Noi sappiamo che la sua velocità, come vettore, deve essere tangente la traiettoria. Passiamo ora a scomporre questa velocità secondo due direzioni, che sono quella radiale, ossia del raggio vettore che va dal polo O alla posizione P della particella, e quella trasversa, che corrisponde all’incremento dell’azimut, l’angolo che c’è la direzione radiale e l’asse di riferimento OX. Notiamo che queste direzioni NON sono legate alle direzioni intrinseche alla traiettoria (tangente e centripeta). La direzione radiale e quella trasversa sono tra di loro perpendicolari.


Dato che le due direzioni, radiale e trasversa, sono perpendicolari l’una all’altra, abbiamo che la velocità ha due componenti: quella radiale e quella trasversa. Ossia la velocità della particella è un vettore somma di due vettori componenti come nella figura seguente:


 Dimostriamo che:


Indichiamo in una figura le direzioni del vettori unitari e scriviamo come si può esprimere il raggio vettore da O a P secondo. Esso è il prodotto del modulo r, distanza di P da O, e del suo vettore unitario (versore).


 Deriviamo il raggio vettore secondo il tempo.


Che è ciò che volevamo dimostrare. Abbiamo utilizzato la derivata del versore radiale. Ricordiamoci che la derivata di un vettore che ha  modulo costante è sempre un vettore perpendicolare al vettore da derivare. La derivata del versore radiale è quindi pari al versore trasverso, moltiplicato per la derivata dellìangolo rispetto al tempo. Quanto vale la derivata del versore trasversale? Vediamolo nella seguente figura.



La derivata del versore trasverso deve essere un vettore a esso perpendicolare. E' quindi il versore radiale, cambiato di segno, moltiplicato per la derivata dell'angolo rispetto al tempo.
Utilizzando questo risultato, svolgiamo i calcoli:

Quindi abbiamo che: 



Tuesday 19 March 2013

Domanda di teoria - moto rettilineo


Discutere il moto su una retta.

La cinematica si occupa del moto dei corpi senza discutere le cause che lo determinano. Il problema più semplice che iniziamo a studiare è quello della descrizione del moto di un punto materiale. Il punto materiale è un corpo le cui dimensioni sono trascurabili rispetto alle distanze tipiche dell'ambiente in cui si trova. Anche la terra nel suo moto intorno al sole può essere considerata un punto materiale perché il suo diametro è molto più piccolo della distanza terra-sole. (Nel caso si avesse un oggetto rigido esteso, le cui dimensioni non siano trascuabili, il moto può essere descritto col moto del centro di massa e con la rotazione attorno ad esso).
Per descrivere il moto di un punto dobbiamo innanzitutto dire rispetto a che riferimento lo descriviamo. Prendiamo come riferimento tre assi cartesiani x, yz ed un orologio. Il moto del punto P sarà dato dalle coordinate di P nel riferimento in funzione del tempo t: x(t),y(t),z(t).
La traiettoria del punto sarà l'insieme di tutti i punti in cui si trova il corpo con le coordinate cartesiane date in funzione del tempo. Il caso più semplice da trattare è quello del moto rettilineo, cioè del moto che avviene su una retta. In questo caso il riferimento cartesiano è un asse coincidente con la retta lungo cui avviene il moto, su cui dobbiamo fissare un'origine ed un verso: associato all'asse x ci sarà allora anche il vettore unitario i che ci dice qual è il verso di percorrenza dell'asse che noi assumiamo positivo. Un cronometro serva per misurare il tempo.


Il moto del punto P sarà descritto dalla funzione x(t), dove la coordinata può essere positiva o negativa a seconda dell'orientazione dell'asse. Nella figura, x sarà positiva a destra di O e negativa se a sinistra di O.
Adesso immaginiamo di seguire il moto del punto sull'asse registrando le posizioni che esso occupa ed il tempo a cui le occupa. Consideriamo due istanti t e t' e chiamiamo le due posizioni occupate P e P' con coordinate x ed x'.


Nell'intervallo di tempo (t'-t) il punto si è spostato rispetto all'origine di (x'-x). Definiamo la velocità media come il rapporto:


Notiamo che essa può essere positiva o negativa a seconda che il punto si muova concordemente con il versore o no. Se l'intervallo di tempo diventa molto piccolo, ossia tende a zero, la velocità media descriverà istante per istante, e quindi sempre meglio, la velocità del punto materiale: la velocità media verrà allora chiamata velocità istantanea.
Se scriviamo l'operazione matematica di limite per un intervallo di tempo  che diventa sempre più piccolo, ossia facciamo tendere t' a t, la velocita' media diventa la velocità istantanea. Essa è definita come:


dove con dx e dt si sono indicati gli spostamenti (x'-x) e (t'-t) molto piccoli. Il rapporto dx/dt indica l'operazione matematica di derivazione. La variabile x è una funzione del tempo x(t): se si calcola il rapporto


si ha l'incremento della funzione (nel nostro caso, della posizione x) rispetto all'incremento del tempo: al limite per l'intervallo di tempo che tende a zero si ha la rapidità di questa variazione.
Lo stesso ragionamento fatto per la velocità si può fare per l' accelerazione che dà la variazione della velocità riferita al tempo. L'accelerazione media è:



e quella istantanea:



Ma se ci ricordiamo che: v=dx/dt allora:


dove si è introdotta la notazione della derivata seconda rispetto alla variabile t.
Discutiamo ora le dimensioni della velocità e della accelerazione. La prima grandezza è il rapporto di uno spazio su di un tempo mentre l'accelerazione è il rapporto di una velocità su di un tempo e quindi:

Le unità di misura nel sistema internazionale saranno m/s e m/s/s mentre nel CGS saranno cm/s e cm/s/s rispettivamente.
Studiamo ora alcuni moti rettilinei semplici e cerchiamo di dare per ciascuno di essi l'equazione del moto, ossia l'equazione di x in funzione del tempo t.
I caso: Il punto è fermo, l'equazione che descrive la traiettoria, ossia le posizioni occupate al passare del tempo sono semplicemente:

Infatti, se al tempo iniziale to, che è l'istante di tempo cui noi cominciamo l'osservazione del moto, il punto era in xo, esso vi resta anche negli istanti successivi.

II caso: Moto uniforme. Il punto si muove a velocità costante:


Proviamo a scrivere come equazione del moto:

(*)

Vediamo se è vero. Notiamo che al tempo t=to, x=xo: non è altro che la posizione occupata al tempo iniziale dalla particella e che noi chiamiamo posizione iniziale. È quindi un termine necessario per avere il valore di xo al tempo zero. Se deriviamo l'espressione  (*) rispetto al tempo, otteniamo:

che dice cha la velocità della particella è costante ed è vo. Il contributo vo(t-to) rappresenta l'incremento della posizione al passar del tempo.

III caso: Moto uniformemente accelerato. Il punto si muove con una accelerazione costante

a=costante

Come sarà la velocità v e la posizione x? Proviamo con le due seguenti equazioni e vediamo se sono corrette:

 v = vo +ao (t-to)                                (*)
 x = xo + vo (t-to) + 1/2 ao (t-to)^2     (**)

Se utilizziamo le definizioni (*) e (**) di posizione x e di velocità v date sopra:


Derivando ancora


Le due equazioni (*),(**) sono quindi quelle che descrivono in modo corretto il moto uniformemente accelerato. Notiamo che i valori di x,v,a possono essere positivi o negativi. x è positivo o negativo a seconda della scelta dell’orientazione dell‘asse. Lo stesso vale per velocita’ ed accelerazione, se sono concordi o discordi con l’orientazione dell’asse.
Ovviamente il moto può avere accelerazione non costante, ma dipendente dal tempo: a=a(t). In questo caso la velocità è data dall’integrale:

Una volta calcolata la velocità in funzione del tempo, si puo’ calcolare la posizione in funzione del tempo si ha:
.

Domanda di teoria - moto coordinate cartesiane


Discutere il moto nello spazio in componenti cartesiane.

Per definizione, il vettore posizione rappresenta la posizione relativa del punto P rispetto al punto O scelto come origine. Il vettore spostamento è la variazione della posizione del punto da P a un punto P', senza curarci di come andiamo da un punto all'altro. È quindi un vettore che non dipende da come il punto si è mosso nello spazio tra la posizione  P e la  P'.

Nello spazio, la posizione di un punto in funzione del tempo la possiamo descrivere tramite il vettore posizione r(t) :


Per comodità in figura si sono rappresentate solo le due dimensioni x e y. Si sono indicate le posizioni P e P' del punto nei due istanti t e t’. Lo spostamento del punto da P a P' lo diamo tramite la differenza dei vettori posizione e quindi tramite un vettore spostamento:

.

La velocità media sarà definita come il rapporto tra il vettore spostamento Δr ed il tempo impiegato per compiere questo spostamento t’-t=Δt:


Notiamo che essendo, per definizione, il rapporto di un vettore per un scalare, la velocità è una grandezza vettoriale. Se l'intervallo Δt diventa molto piccolo si ottiene la velocità istantanea:


dove compare l'espressione della derivata.
Come abbiamo già fatto per il calcolo della somma dei vettori, passiamo ad utilizzare le componenti cartesiane per semplificare i calcoli. Un generico vettore lo possiamo pensare come la somma di tre pezzi:

Siccome i tre versori non cambiano al passare del tempo poiché si tiene fisso il riferimento, potranno cambiare solo le componenti x, y e z, ed infatti nella scrittura ne abbiamo già esplicitato la dipendenza come funzioni del tempo. Scriviamo allora immediatamente la velocità come la seguente derivata: 


Indico con:

le componenti della velocità lungo i tre assi. L'accelerazione è:


Il moto nello spazio, se lo pensiamo descritto mediante le tre componenti cartesiane diventa la composizione di tre moti lungo i tre assi cartesiani. Il moto lungo l' asse x non è altro che il moto della proiezione x(t), prorpio lungo quest'asse, e così per y e z. Tutto ciò che abbiamo visto per il moto lungo una dimensione e che abbiamo studiato in precedenza continua a valere per ciascuno dei tre assi. Quindi le equazioni per la velocità, per l'accelerazione e per la posizione che abbiamo già ricavato varranno per ciascuno dei tre moti lungo gli assi.
Facciamo un esempio, pensiamo ad una particella, inizialmente posta nell'origine del riferimento, sottoposta ad una accelerazione a diretta lungo l’asse y, ed avente una velocità iniziale v diretta lungo l’asse x. Non c’è accelerazione e velocità iniziale lungo l’asse z. Inoltre la posizione iniziale è nell'origine. Assumiamo to=0 il tempo iniziale, quando la particella è nell’origine.
Allora: vo=vo i, a=a j


Scriviamo le equazioni del moto uniformemente accelerato lungo i tre assi:


Il moto si svolge nel piano xy. Sommando i contributi per i vettori velocità e posizione:


Siamo ora in grado di analizzare il moto dei gravi in un piano verticale (x,y). Consideriamo il caso in cui vi sia solo presente l'accelerazione di gravità g lungo l'asse verticale y. Scegliamo l'asse y orientato verso l'alto (vedi figura).

Nella figura si vede una parte della traiettoria di un grave che parte dall'origine con una con una velocità iniziale di modulo vo. Esso è soggetto all'accelerazione di gravità g = - g j. g indica il modulo dell'accelerazione.
La traiettoria che descrive il pallone risulta essere una traiettoria parabolica. Scriviamo le equazioni per il moto lungo l'asse x e l'asse y: 

Quindi:
Da cui, se si ricava t dalla prima equazione e si sostituisce nella seconda:


che è proprio  l'equazione di una parabola:

.

Friday 1 July 2011

Treni

Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l’altro alle rispettive velocità costanti di v1  = 50 km/h  e v2  = 100 km /h. Dopo quanto tempo si incontrano ?

I due treni si incontrano quando sono nello stesso punto allo stesso istante. Oppure quando lo spazio x1 percorso dal primo più lo spazio x2 percorso dal secondo, sommati, danno la distanza totale che separa le due stazioni.

In formule, per il moto uniforme: x1 = v1 t,   x2 = v2 t

All’istante dell’incontro: x1  + x2 = v1 t + v2 t = 20 km

v1 =  50 km/h =   13,89 m/s
v2 = 100 km/h =   27,778 m/s
20 000 m = (13,89m/s) t + (27,778 m/s) t
t = 20 000 / 41,67 s = 480 s

v^2

Un automobilista sta guidando a una velocità costante di 80 km/h quando vede un ostacolo sulla strada a 50 m. I freni gli consentono di sviluppare una decelerazione  a = - 6 m/s^2. Riuscirà il guidatore a fermarsi prima dell'ostacolo?  (s^2 significa s al quadrato)

Il moto é rettilineo uniformemente decelerato, ossia con accelerazione costante negativa. Diciamo S lo spazio di frenata, conosciamo accelerazione, velocità iniziale e velocità finale, che deve essere zero. Utilizziamo l'equazione:

vfin^2 = viniz^2 + 2aS

Trasformiamo la velocità in m/s: viniz = 80 km/h = 22,222 m/s.

L’equazione precedente diventa: 0 = (22,222 m/s)^2 + 2⋅(-6 m/s^2)⋅S

Quindi: S = 41,2 m

L'ostacolo è a 50 metri e quindi l'automobilista si ferma prima.

Cinematica con dinamica

Un oggetto viene lanciato su una rampa inclinata di 45° con una velocità iniziale di 30 m/s. Dopo quanto tempo si ferma ? A che altezza dal suolo arriva?


Sia O l'origine. Il riferimento sia paralleo al piano inclinato verso l'alto. La direzione di moto è  positiva quando è erso l’alto. La velocità iniziale risulta positiva e l’accelerazione di gravità (diretta verso il basso)
negativa.  Valuatiamo la componente dell’accelerazione lungo la direzione di moto, che risulta essere: a = -g sen α = - 6,94 m/s (con g indico il modulo dell'acc. di gravità, pari a 9.8m/s^2).
Per calcolare il tempo che occorre all’oggetto per fermarsi devo ricordarmi che la velocità finale, in
questo caso, é nulla, e poi usare la definizione di accelerazione:

a = (vfin - v iniz)/ t

Nel nostro caso: -g sen α = - 6,94  m/s^2= (vfin - v iniz)/ t= (0 -  30 m/s) / t

Quindi:

t = 4,32 s

Per calcolare lo spazio S percorso sulla rampa, ho a disposizione due espressioni:

S = 1/2 a t^2 + viniz t

Si ottiene:

S = 1/2 (- 6,94) (4,32)^2 + 30 ⋅ 4,32 =  64,8 m

La quota H raggiunta sul livello del suolo la si ricava come:

H = S sen α = 64,8 m ⋅ sen 45° = 45,8 m

Tuesday 10 May 2011

xy

Una particella A si sposta sulla retta y=d (30 m) a velocità costante v di modulo v= 3.0 m/s e direzione parallela all' asse x. Una seconda particella B parte dall' origine, con velocità iniziale zero e accelerazione a di modulo a = 0.40 m/s^2, nello stesso istante in cui la particella A attraversa l' asse y. Quale angolo \theta fra a e il verso positivo dell' asse y potrebbe provocare una collisione fra le due particelle?


Wednesday 23 March 2011

Accelerazione tangenziale e centripeta

Un oggetto si muove lungo una traiettoria curva con velocità che cambia sia in modulo che in  direzione. Ricordiamo che la velocita' ha direzione tangente la curva e quindi deve necessariamente cambiare direzione per seguire la traiettoria). Il vettore accelerazione a varia anche lui in direzione e modulo in ogni punto della curva.



Si  può scomporre in due vettori, come mostrato in figura nelle posizioni A, B e C: la componente centripeta (o normale) ac diretta come il raggio di curvatura, raggio della circonferenza che meglio approssima localmente la curva. verso l’interno, e la componente tangenziale at, tangente alla curva. I vettori unitari u e uc sono perpendicolari.  Il vettore accelerazione può quindi essere scritto come
a = acuc + at ut

L’accelerazione centripeta è dovuta alla variazione della direzione del vettore velocità, il suo modulo è dato dalla  ac = v2/r
L’accelerazione tangenziale è dovuta alla variazione del modulo della velocità, il suo modulo è dato dalla at = dv / dt

Geometria differenziale delle curve

Tante cose che abbiamo visto oggi, sulla tangente la curva e la perpendicolare ad essa, che abbiamo detto "centripeta", sono parte della "geometria differenziale delle curve".
http://it.wikipedia.org/wiki/Geometria_differenziale_delle_curve
Questo articolo di Wiki è molto complicato, però possiamo riconoscere una cosa vista stamattina: è il Sistema di Frenet. Esso è un riferimento mobile di n vettori unitari ed ortogonali e1(t),...en(t), dipendenti da t, che viaggiano sulla curva. Essi sono utili per descrivere il comportamento locale della curva nello spazio ad n-dimensioni. Con opportune derivazioni, si ottengono le curvature generalizzate.
In due dimensioni:
Il cerchio osculatore

Nel piano, il primo vettore di Frenet e1(t) è la tangente alla curva al tempo t, mentre il vettore e2(t), detto vettore normale è il vettore normale a e1(t), nella direzione in cui curva. La curvatura 1/κ. indica lo spostamento della curva dalla linea retta tangente. Il reciproco è chiamato raggio di curvatura R=1.. Ad esempio, una circonferenza di raggio r ha curvatura costante κ=1/r, mentre una linea retta ha curvatura nulla.
Il cerchio osculatore è il cerchio tangente a e1(t) e di raggio 1/κ. . Il cerchio osculatore approssima la curva intorno al tempo t "fino al secondo ordine": ha cioè le stesse derivate prima e seconda della curva  nel punto.
I vettori unitari di Frenet li abbiamo chiamati ut e uc.