Monday 14 May 2012

Tires

While riding behind a car traveling at 3.00 m/s, you notice that one of the car’s tires has a small hemispherical bump on its rim, as in Figure. (a) Explain why the bump, from your viewpoint behind the car, executes simple harmonic motion. (b) If the radius of the car’s tires is 0.30 m, what is the bump’s period of oscillation?

Tuesday 8 May 2012

An ancient rangefinder (roman dodecahedron)

According to Wikipedia, "a rangefinder is a device that measures distance from the observer to a target, for the purposes of surveying, determining focus in photography, or accurately aiming a weapon. Some devices use active methods to measure (such as sonar, laser, or radar); others measure distance using trigonometry (stadiametric rangefinders and parallax, or coincidence rangefinders). These methodologies use a set of known information, usually distances or target sizes, to make the measurement, and have been in regular use since the 18th century".
It could be surprising, but probably the Roman Army had a rangefinder. This was the Roman Dodecahedron.

Image courtesy Wikipedia


Just recently, I learned about this “mistery” of archaeology: the roman dodecahedron. After preparing a copy of a specific object, I proposed a paper on arXiv, explaining that it can be used for measuring distance (as a telemeter/rangefinder). http://arxiv.org/abs/1204.6497 (In Italiano a http://porto.polito.it/2497004/ )
 For me, those dodecahedrons having a structure with holes of different sizes, are military instruments to evaluate distances for ballistics. It is simple to use. Of course, later, during the Middle Age, different instruments had been developed for surveying: the dodecahedron was of the Roman Army, and, probably, its use lost after the collpase of the Empire.

Monday 7 May 2012

Thursday 3 May 2012

Domanda di teoria - 2013 - Stevino

Discutere la legge di Stevino

Per preparare la risposta, usate il file ppt sul portale


Abbiamo visto che 
  Consideriamo il caso in cui ci sia un'energia potenziale dipendente solo da z.
Si ha che, del gradiente resta solo la derivata rispetto a z:
 

 
 Applicazioni notevoli sono i vasi comunicanti e i manometri

Domanda di teoria - 2012

Discutere la statica di fluidi, legando il gradiente della pressione alle forze di volume.

Per preparare la risposta, usate il file ppt sul portale









Wednesday 2 May 2012

Dodecahedral Sound Source

Some builders of acoustics sources produce dodecahedral loudspeakers. These sources have the characteristic to be omni-directional. This is one of important requirements for the sound source thatcan be create from various spherical polyhedrons. The paper: CHIN. PHYS. LETT. Vol. 27, No. 12 (2010) 124302, Directivity of Spherical Polyhedron Sound Source Used in Near-Field HRTF Measurements, by YU Guang-Zheng, XIE Bo-Sun, RAO Dan, is investigating  the directivities of the spherical  tetrahedron, hexahedron and dodecahedron sound sources.
See also 

Tuesday 1 May 2012

Domanda di teoria - Energia potenziale forza centrale

Discutere l'energia potenziale e il potenziale di una forza centrale.

Per rispondere alla domanda utilizzate il materiale seguente.



 Discitiamo ora l'energia di una massa m che si muova di orbita circolare attono at un corpo di massa M 
Discutiamo ora il caso della forza Coulombiana
 
 
Graficamente

Il problema della massa variabile

Discutere come si può essere affrontato lo studio di un sistema a massa variabile.

Un esempio di sistema a massa variabile è il veicolo spaziale, ossia un razzo che espelle carburante nello spazio. Usiamo questo esempio per discutere l’approccio al problema.
Supponiamo che il veicolo spaziale espella carburante a una velocità −Vo rispetto al veicolo stesso, nella stessa direzione della velocità del veicolo. Assumiamo quindi il problema come unidimensionale per semplicità di calcolo. Tralasciamo quindi i segni di vettore.
La massa del veicolo e la massa del carburante espulso in funzione del tempo sono date da:
dove α è supposta una costante positiva.
Sia v la velocità del veicolo spaziale al tempo t rispetto allo spazio (riferimento inerziale “stelle fisse”). Rispetto allo spazio, il carburante si muove con una velocità pari a −Vo+v.
Il carburante espulso conferisce al veicolo spaziale un impulso.
Consideriamo la prima equazione cardinale dei sistemi che dice che la variazione della quantità di moto totale del sistema è nulla se non ci sono forze esterne che agiscono sul sistema. Nel caso del razzo supponiamo nullo qualsiasi effetto. Scriviamo la prima equazione cardinale:


La massa del razzo è variabile e quindi devo derivare anche lei. Chiamiamo Mo  la massa iniziale del razzo. Essa sarà funzione del tempo come: M(t)=Mo−αt.
Inserisco nell’equazione del moto trovata prima:


Ovviamente non possiamo pensare che il razzo espella tutta la sua massa (ci sono la struttura stessa e il motore). Detto T=Mo/α, supponiamo che il tempo di espulsione sia al massimo il 90% di T.
Calcoliamo la velocità in funzione del tempo integrando l’accelerazione. Usiamo le tavole degli integrali per svolgere l’integrazione:




Forze interne ed esterne al sistema

Cosa intendiamo per sistema di particelle e per forze interne ed esterne?

Un sistema è un insieme di corpi. Essi interagiscono tra di loro e con altri corpi che non fanno parte del sistema. Se il sistema non ha interazioni col mondo esterno si dice "isolato". In Fisica I, si studiano i "sistemi di particelle".
Un sistema di particelle è un 
Su ogni punto di un sistema agiscono tutti gli altri punti del sistem con "le forze interne". Su ogni punto del sistema può anche agire il resto dell'universo con le "forze esterne".
Torniamo all'esempio di Giove e le sue lune. Questo "sistema" compie la sua rivoluzione attorno al Sole, mentre le lune girano attorno al pianeta. Dopo aver identificato le forze interne ed esterne, possiamo dire che la rivoluzione è determinata dall'azione del Sole.
Ricordiamo ora che vale il principio di azione e reazione.
Le forse interne si annullano a coppie.
Quindi, facciamo ancora un esempio:
La "risultante" delle forze è la somma di tutte le forze che agiscono su tutte le particelle del sistema: questa riusltane coincide con la somma delle forze esterne che agiscono sulle particelle del sistema poiché le forze interne si annullano a coppie.
La risulante delle forze esterne è la grandezza che compare nella prima equazione cardinale dei sistemi.

Centro di massa

Definire il centro di massa.

Notare che la posizione del centro di massa non dipende dal riferimento, il vettore posizione sì. Ma questo valeva anche per la singola particella. La posizione viene infatti "descritta" dal "vettore posizione" che è quel raggio vettore che unisce la posizione all'origine del riferimento.
Possiamo anche definire la velocità e l'accelerazione del centro di massa nel modo seguente.