Wednesday 10 October 2012

Indiana Jones

Vi ricordate il giovane Indiana Jones che salta giù dal treno del circo?




"An especially interesting case arises when a projectile is hurled from the rear of a fast-moving train or other vehicle. Let us suppose that someone throws a stone, horizontally, down the track from the rear platform of a train speeding along at 60 miles per hour. And suppose that the stone is thrown at an initial speed of 60 miles per hour (relative to the train, of course) . Then, to the people on the train, the stone will appear to follow a perfectly normal parabolic path. But how will it seem to a person standing on the ground alongside the track? Remember that velocity is always relative. The forward motion of the train will just cancel the backward motion of the stone. In other words, the stone will plummet straight down to the ground, with no motion at all in the horizontal direction.
A similar situation arises when a bullet is fired from a speeding aeroplane. A revolver bullet, for instance, has a muzzle velocity of only about 500 miles per hour. If such a bullet is fired from the rear of a modern warplane speeding along at 500 miles per hour, the two velocities cancel, and the bullet at first stands still momentarily then falls straight down as though it had been dropped. On the other hand, if the bullet is fired from the front of the plane, the velocities add, and the speed of the bullet relative to the earth is 1,000 miles per hour. Of course, the machine guns used in warfare fire their bullets at speeds much greater than 500 miles per hour. Moreover, if the target is another moving plane, it is the speed of the bullet relative to this moving target that counts in determining the damage done not the speed relative to the earth. It makes no difference at all whether a revolver bullet stands still with respect to the earth and you run into it with a speed of 500 miles per hour, or whether you are standing still with respect to the earth and the revolver bullet strikes you with this speed. In both cases the effect is the same, and unpleasant for you."


From PHYSICS TELLS WHY, An Explanation of Some Common Physical Phenomena 
By OVERTON LUHR

the Monkey on the String


Imagine a string passing over a pulley, with a monkey hanging on one end of the string, and an iron bob on the other end balancing the monkey. Monkey and bob are equal in weight, and both are initially at rest. The weight of the string and the friction in the pulley can be neglected.
What happens to the iron bob when the monkey begins to climb up the string? In other words, will the bob rise with the monkey, will it descend, or will it remain stationary?



To solve the problem we must apply Newton's Laws of Motion. When the monkey begins to climb, he is accelerated upward. Therefore, according to Newton's Second Law, the string must not only support the monkey's weight, but it must supply additional force for the acceleration. As a test of this conclusion, you might stand  on bathroom scales sometime when you are going up in an elevator. You will find that as the elevator starts upward, the scales will register several pounds more than your weight. The added push upward on the bottom of your feet serves to accelerate your body. For a simpler experiment, one which can be done less conspicuously, hang a weight on a string, and jerk upward. You will feel a sudden added tension in the string as the mass is accelerated.

Even though the monkey moves upward by his own efforts, there must be an added tension in the string to provide force for the acceleration. By Newton's Third Law the tension in the string must pull equally on the iron bob. Therefore, the bob is accelerated upward just like the monkey. The solution to the problem, then, is this: the monkey and the bob rise together.

When the monkey stops climbing, and thus decelerates, the tension in the string is decreased, and the bob comes to rest at the same time as the monkey. Likewise, if the monkey turns and starts down the string, the bob descends with the monkey.


From PHYSICS TELLS WHY, An Explanation of Some Common Physical Phenomena 
By OVERTON LUHR

Does a Flying Bird Weigh Anything?


Does a Flying Bird Weigh Anything? ... Suppose that a bird weighing one pound is flying around in a five-pound cage. If you hung the cage on a spring balance,  would the scales record the weight of the cage alone, or the weight of the cage plus the bird? 


There is a story connected with this problem. Some years ago, a graduate student in physics at a large university decided to have some fun at the expense of two of his professors. A newspaper reporter was made a party to the scheme, and was persuaded to call each of the two professors on the telephone in order to ask his expert opinion on a scientific question.

Professor A was asked the following question: If a one-pound bird is flying in a five-pound cage made of thin wire, how much will the combination weigh? "Five pounds," Professor A told the reporter.

Professor B was then called, and a similar, but slightly different question was put to him: If a one-pound bird is flying in a five-pound cage made entirely of glass, how much will the combination weigh? "Six pounds," replied Professor B without hesitation.

The next day, much to the embarrassment of the two prominent professors, headlines appeared in the local paper: UNIVERSITY PROFS DISAGREE ON SCIENTIFIC QUESTION. A carefully misworded account of the questions and answers followed, with the words wire and glass omitted. No doubt everyone would agree that the bird and cage together would weigh six pounds, provided the bird were sitting stationary on its perch. But which of the professors was right in the case of the flying bird? The answer is that they were both right.  Since the bird is not falling, it must be supported by something. That something is the air. Because of the flapping of the bird's wings, the air pushes up on the bird with a force of one pound. The bird must then push down on the air with an equal and opposite force. This downward force of one pound is transmitted through the air to the first solid surface available. Since the wire cage would not have solid walls or floor, the air would push down, not on the cage, but on the ground below. Therefore, as Professor A said, the wire cage plus bird would weigh only five pounds. On the other hand, the glass cage would be impermeable to air, and in this case the weight of the bird must be borne by the cage. Professor B was absolutely correct when he said that the scales would then read six pounds. There is a moral to this story about the bird in the cage. It illustrates the necessity for precise statement in a scientific problem. 

From PHYSICS TELLS WHY, An Explanation of Some Common Physical Phenomena 
By OVERTON LUHR


Sunday 23 September 2012

Tuned pendulum

This web page  http://www.chcp.org/seismo.html describes the mechanism inside the ancient first seismometer (see this post) of the first century AD.
From seismo.html: "Our seismometer is intended as a demonstrator. The visitor shakes the table to simulate an earthquake. Our pendulum is "tuned" to this input. The crust of the earth absorbs the high frequency content of a quake, the signal from a distant earthquake is in the sub-audio range. In order to detect actual earthquakes the pendulum would need to be several feet in length."

Saturday 22 September 2012

The world's first seismometer was Chinese


Who was the inventor of the first siesmometer?
 Zhang Heng. He was  (AD 78–139) a Chinese astronomer, mathematician, inventor, geographer, cartographer, artist, poet, statesman. He lived under the Han Dynasty (AD 25–220) of China. He was a  Chief Astronomer, Prefect of the Majors for Official Carriages, and then Palace Attendant at the imperial court.  He invented the world's first water-powered armillary sphere,  improved the inflow water clock by adding another tank and invented the world's first seismometer, which discerned the cardinal direction of an earthquake 500 km away. He improved previous Chinese calculations of the formula for pi. In addition to documenting about 2,500 stars in his extensive star catalogue. Some modern scholars have also compared his work in astronomy to that of Ptolemy (AD 86–161). (Adapted from Wiki)

 A replica of an ancient Chinese Siesmograph  (25-220 CE). Picture taken in July 2004  at Chabot Space & Science Center in Oakland California.
"In 132 CE, after several serious earthquakes in China, astronomer Zhang Heng invented this instrument to warn people of the next one. When the ground shook, it moved a pendulum inside the jug. The pendulum pushed a lever that opened one dragon's mouth. A ball rolled out and into the toad's mouth below, sounding an alarm. The open dragon mouth pointed in the direction of the earthquake, notifying the Emperor."
http://en.wikipedia.org/wiki/File:EastHanSeismograph.JPG


Thursday 20 September 2012

Una cosa importante

Una cosa che è importante sapere per la  carriera universitaria degli studenti di Ingegneria è quanto scritto
al link
http://apply.polito.it/LM_Ingegneria_it.html
ACCESSO LM INGEGNERIA Per iscriversi è necessario che lo studente abbia un’adeguata preparazione iniziale .... - Studenti immatricolati presso il Politecnico di Torino a partire dall’a.a. 2007/2008 La media viene calcolata su tutti i crediti con voto in trentesimi con l’esclusione dei peggiori 28 CFU, in considerazione degli sbarramenti applicati dall’Ateneo. Sono ammessi alla LM i candidati per i quali la durata del percorso formativo è inferiore o uguale a 4 anni. Sono ammessi alla LM i candidati per i quali la durata del percorso formativo è superiore a 4 anni ma inferiore o uguale a 5 anni e la preparazione corrisponde ad una media superiore o uguale a 21/30. Sono ammessi alla LM i candidati per i quali la durata è superiore a 5 anni e media superiore a 24.

Nuovo campus a Torino

A Torino c'è un nuovo campou!
"Il Campus Luigi Einaudi aprirà le sue porte il 22 settembre con una grande festa a partire dalle 14.30: una giornata densa di iniziative per scoprire e vivere un’anteprima di quello che sarà un luogo di incontro e scambio tra l’Università e la Città. L’inaugurazione sarà l’occasione per celebrare grandi personaggi che hanno lasciato un’impronta indelebile nella storia dell’Ateneo torinese come in quella di tutto il paese: Luigi Einaudi, con uno spettacolo teatrale inedito dedicato agli aspetti più sconosciuti della sua vita, e Norberto Bobbio, al quale è intitolato il nuovo Polo Bibliotecario."
http://www.unito.it/unitoWAR/page/istituzionale/speciali1/campus_luigi_einaudi1



Il campus in due fasi della costruzione

Tuesday 24 July 2012

Carlo Promis e l'antica Torino

Carlo Promis e l’antica Torino,
di Amelia Carolina Sparavigna, Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino, Italy, amelia.sparavigna@polito.it

A metà dell’Ottocento, l’antica Torino rivive grazie all’opera di un architetto e archeologo, nonché  docente di quello che diventerà il Politecnico di Torino, Carlo Promis.

La “Storia dell’antica Torino (Julia Augusta Taurinorum)”, uscita nel 1869 a Torino presso la stamperia Reale, è opera di Carlo Promis. Promis fu architetto, archeologo e filologo, Nato nel 1808 e morto nel 1873 a Torino, vi si era laureato nel 1828 in architettura. Come architetto si devono ricordare il progetto urbanistico di Piazza Carlina e la riqualificazione di molte aree e vie della città. Re Carlo Alberto di Savoia, nel 1839, lo nominò regio archeologo. Nel 1860 passò a insegnare architettura nella Regia Scuola di Applicazione per gli Ingegneri, che era stata costituita nel 1859 e che nel 1906 diventerà il Regio Politecnico. Prima istituzione universitaria per la formazione della figura dell’ingegnere è l’attuale Politecnico di Torino.
L’opera di Promis è considerata dagli studiosi suoi contemporanei e da quelli che l’hanno seguito come fondamentale per la conoscenza dell’antica Torino. Il testo è così stato ristampato: l’edizione da me utilizzata è quella del 1969 pubblicata da Edilibri, Andrea Viglongo & C Editori a Torino [1]. In effetti, è utile riportare il titolo completo del libro che è “Storia dell'antica Torino, Julia Augusta Taurinorum: scritta sulla fede de' vetusti autori e delle sue iscrizioni e mura”, che ci dice come Promis, da architetto e archeologo insieme, abbia usato fonti antiche, consistenti nei testi di autori latini e greci, le epigrafi scoperte a Torino, e i resti delle mura che aveva trovato durante i suoi scavi archeologici. ... 


L'articolo completo è pubblicato su Scribd, il 24 Luglio 2012.
http://www.scribd.com/doc/100914242/Carlo-Promis-e-l-Antica-Torino

Riferimenti
Carlo Promis, Storia dell'antica Torino, Julia Augusta Taurinorum: scritta sulla fede de' vetusti autori e delle sue iscrizioni e mura, 1869, Torino, stamperia Reale, 1969, Edilibri, Andrea Viglongo & C Editori, Torino.
Amelia Carolina Sparavigna, The orientation of Julia Augusta Taurinorum (Torino), arXiv, 2012, http://arxiv.org/abs/1206.6062


© Amelia Carolina Sparavigna, 2012. Tutti i diritti riservati. All rights reserved.




Perimetro della Torino romana segnato su una mappa di Acme Mapper. La posizione delle quattro porte è segnata dai marker (due delle porte esistono ancora). Il Decumano Massimo è inclinato rispetto la direzione cardinale Est-Ovest e coincide con Via Garibaldi. Notate gli isolati coincidenti con le insulae romane. L’ombelico  della città è all’incrocio tra decumano e cardo massimo. Il perimetro della città romana va dalle Porte Palatine a Via della Consolata. Piega a Sud su Via della Consolata e Corso Siccardi. Su questo lato si apriva la Porta Decumana, di cui non rimane nulla. All’angolo di Via Cernaia, il perimetro gira verso la Porta Marmorea, anch’essa smantellata. Su questo lato ci sono Via Cernaia, Santa Teresa e Via Maria Vittoria, Piazza San Carlo. All’angolo dell’Accademia delle Scienze, dove c’è il Museo Egizio, le mura correvano verso Nord, attraversando Piazza Castello, dove c’è la Porta Pretoria, poi l’area del Palazzo reale, ritornando alle Porte Palatine.