Showing posts with label Oscillazioni. Show all posts
Showing posts with label Oscillazioni. Show all posts

Monday 14 May 2012

Pendulum

A simple pendulum is 5.00 m long. (a) What is the period of simple harmonic motion for this pendulum if it is located in an elevator accelerating upward at 5.00 m/s2? (b) What is its period if the elevator is accelerating downward at 5.00 m/s2? (c) What is the period of simple harmonic motion for the pendulum if it is placed in a truck that is accelerating horizontally at 5.00 m/s2
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.50 N is applied. A 0.500-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is pulled horizontally so that it stretches the spring 5.00 cm and is then released from rest at t = 0. (a) What is the force constant of the spring? (b) What are the angular frequency ω, the frequency, and the period of the motion? (c) What is the total energy of the system? (d) What is the amplitude of the motion? (e) What are the maximum velocity and the maximum acceleration of the particle? (f) Determine the displacement x of the particle from the equilibrium position at t = 0.500 s. 

Tires

While riding behind a car traveling at 3.00 m/s, you notice that one of the car’s tires has a small hemispherical bump on its rim, as in Figure. (a) Explain why the bump, from your viewpoint behind the car, executes simple harmonic motion. (b) If the radius of the car’s tires is 0.30 m, what is the bump’s period of oscillation?

Tuesday 17 April 2012

Domanda di teoria - energia oscillatore

Discutere l'energia dell'oscillatore armonico

Per rispondere a questa domanda utilizzate il materiale seguente

L'oscillatore armonico è governato dalla forza elastica che è una forza conservativa. Possimao definire una funzione potenziale come nellos chema seguente.



 Una tal funzione ha una forma parabolica attrono la posizione di equlibrio.
Ricordiamo che la forza elastica è ...  e che la soluzione del moto è ....


 Calcoliamo la velocità derivando la posizione della massa
 L'energia potenziale elastica si trasforma in energia cinetica durante l'aoscillazione.
Discutiamo le due energia e l'energia totale meccanica in funzione del tempo 
 Graficamente
 Ricordando che la pulsazione è data dalla dinamica del sistema massa-molla:

Saturday 24 March 2012

Quadratura

Quando i segnali sono sfasati di 90 gradi, si dice che sono in  quadratura.
Ricordate che 90 sono igradi degli angolo del quadrato.

Thursday 7 July 2011

Pendolo cicloidale

Il pendolo cicloidale è un tipo di moto periodico ideato da Christiaan Huygens intorno al 1659 con una peculiare proprietà: le sue oscillazioni sono isocrone indipendentemente dalla loro ampiezza. Si è visto infatti che questo vale nel caso del pendolo semplice solo per ampiezze abbastanza piccole. Huygens dimostrò invece che un punto materiale che oscilla seguendo una traiettoria cicloidale sotto l'azione della gravità ha un periodo costante che dipende unicamente dalle dimensioni della cicloide.
more  http://it.wikipedia.org/wiki/Pendolo#Pendolo_cicloidale

Friday 8 April 2011

Impedenza meccanica

L'oscillatore armonico semplice è determinato dall'equazione del moto: m a(t) + k x(t) = 0, che descrive il moto prodotto da una forza di richiamo elastica proporzionale allo spostamento della massa m dall'origine delle coordinate. a(t) indica l'accelerazione istantanea. La legge di questo moto è:

x(t)=A cos (ωot + φ)

dove ωo = √(k/m)  è la frequenza propria dell'oscillazione libera, mentre A e φ sono due costanti che dipendono dalle condizioni iniziali del moto. Siamo ora  interessati all'oscillatore forzato, che è un oscillatore armonico al quale si applica, oltre alla forza elastica, anche una forza esterna, armonica anch'essa, di frequenza arbitraria. L'equazione del moto diviene

m a(t) + k x(t) = F(t)

dove  F(t)=Fo cos(ωt), è appunto la forza esterna.
Una grandezza fisica interessante è l’impedenza meccanica dell'oscillatore. L'impedenza meccanica del sistema è il rapporto tra la forza applicata alla particella  e la velocità della particella stessa. Nel sistema mks si misura in ohm meccanici (kg/s). L'impedenza meccanica dell'oscillatore è il rapporto tra la forza F(t) esercitata sulla massa oscillante, e la velocità v(t) della massa stessa. Per calcolarla assumiamo che il moto risultante sia ancora un moto armonico, e sostituiamo nell'equazione del moto la soluzione di prova:

x(t)=A cos (ωt)

Otteniamo l'equazione

(-m ω2+k) A cos (ωt) = Fo cos(ωt),

da cui otteniamo l'ampiezza del moto risultante in funzione dell'ampiezza Fo della forza applicata, e della pulsazione:
Ora si ricava la velocità:

v(t)= − ωA(ω) sin (ωt)

La forza e velocità non sono in fase tra loro. La forza è una funzione cos, la velocità è invece una funzione sin, il che significa c’è tra di loro uno sfasamento di ±90° . Da  questo esempio è chiaro che ci sono due effetti: una variazione dell’ampiezza in funzione della pulsazione ed  uno sfasamento tra forza applicata e velocità della massa. Determinato lo sfasamento, possiamo determinare l'impedenza meccanica Z considerando il rapporto tra i valori massimi in modulo di forza F e velocità v:


A pulsazioni basse, l'impedenza dell'oscillatore è dominata dalla sua rigidità k, mentre l'inerzia m è poco rilevante, mentre alle alte frequenze la massa dell'oscillatore diventa la caratteristica dominante sul moto, mentre la rigidità influisce poco. La regione attorno ad ω0 dove le due proprietà divengono egualmente importanti è la regione in cui si ha una risonanza. La risonanza corrisponde ad un minimo dell'impedenza, e cioè al punto in cui l'oscillatore oppone la minima resistenza alla forza esterna che lo mantiene in moto.
Studiando l'ampiezza dell'oscillazione come funzione della pulsazione della forza esterna appaiono immediate alcune considerazioni.



a) Data l'intensità della forza esterna, l'ampiezza delle oscillazioni è tanto maggiore quanto più la pulsazione della forza esterna ω è vicina alla pulsazione propria ω0 dell'oscillatore.
b) Pulsazioni molto maggiori o molto minori di ω0 tendono a ridurre l'ampiezza delle oscillazioni.
c) Per pulsazioni prossime ad ω0 avviene un fenomeno legato all’energia. L'energia della sorgente esterna si trasferisce in modo sempre più efficiente all'oscillatore, accumulandosi di periodo in periodo provocando oscillazioni sempre maggiori.
d) A ω = ω0 le oscillazioni diventano di ampiezza infinita. Nella realtà ciò non accade perché ci sono fenomeni di smorzamento.

Thursday 7 April 2011

Simulatori oscillazioni

Alla pagina http://staff.polito.it/amelia.sparavigna/Oscillatori/ trovate due programmi che simulano l'oscillatore smorzato e l'oscillatore smorzato forzato. I parametri da inserire sono omega naturale, beta/m, Fo/m, omega forzante. Poi si devono dare la posizione iniziale del punto e la sua velocità iniziale. Infine il tempo di simulazione. Quando si inseriscono i dati, si deve usare il punto prima delle cifre decimali, per esempio 1.5 e non 1,5.
Il programma Oscill-smorzato scrive due file: uno contiene la posizione x in funzione del tempo t per l'oscillatore smorzato, l'altro la funzione senza smorzamento.
Il programma Oscill-forzato-smorzato scrive due file: uno contiene la posizione x in funzione del tempo per l'oscillazione forzata smorzata, l'altro la funzione forzante.
Tramite un programma di grafica (gnuplot per esempio) si possono visualizzare i files come grafici.
Si consiglia di scaricare i programm in una apposita cartella dove eseguirli e raccogliere i file in uscita.

Le immagini seguenti mostrano lo snapshot del programma e del grafico

Caso oscillatore smorzato


Caso oscillatore forzato smorzato


Per cominciare, usate i dati che vedete sui snapshot.

Sfasamento

Esempio di sfasamenti




Saturday 26 March 2011

Oscillazione smorzata

Consideriamo una oscillazione smorzata. Vediamo come varia la funzione al variare del coefficiente di smorzamento, confrontandola con la pura oscillazione.



Il primo massimo (vedi figura) si sposta verso t=0 al crescere del fattore di smorzamento B. Le curve rosse sono a diversi valori crescenti di smorzamento. La curva verde è la funzione trigonometrica per A=1. Nella figura, le curve smorzate hanno B=omega/4.*i, con i da 1 a 8.
Calcoliamo la derivata per trovare il massimo



Il primo massimo (vedi figura) si sposta verso t=0 al crescere del fattore di smorzamento B. Si trova t risolvendo la funzione tan(omega*t)=omega/B.
Oppure lo si trova sul grafico.