Poisson distribution
"The Poisson distribution applies when: (1) the event is something that can be counted in whole numbers; (2) occurrences are independent, so that one occurrence neither diminishes nor increases the chance of another; (3) the average frequency of occurrence for the time period in question is known; and (4) it is possible to count how many events have occurred, such as the number of times a firefly lights up in my garden in a given 5 seconds, some evening, but meaningless to ask how many such events have not occurred."
from http://www.umass.edu/wsp/statistics/lessons/poisson/index.html
Dato che lavora sui numeri discreti è la statistica dei decadimenti radioattivi.
La pagina http://www.umass.edu/wsp/statistics/lessons/poisson/problems.html
propone proprio un problema che lavora sui dati del 1910
"Here are the classic 1910 observations of Rutherford, Geiger, and Bateman for the number of alpha particles emitted by a film of polonium, as observed over intervals of one-eighth of a minute (7.5 seconds). "
Here the answer
http://www.umass.edu/wsp/statistics/lessons/poisson/answer03.html
Showing posts with label Radioattività. Show all posts
Showing posts with label Radioattività. Show all posts
Sunday, 17 March 2013
Friday, 1 April 2011
Vita media ed emivita
La radioattività, o decadimento radioattivo, è un insieme di processi fisico-atomici tramite i quali, alcuni nuclei atomici instabili (radionuclidi) o radioattivi decadono, trasmutano in una specie atomica a contenuto energetico inferiore secondo la legge di conservazione della massa/energia e raggiungendo così uno stato di maggiore stabilità.
Equazione del decadimento esponenziale
Data una quantità il cui valore è N, il decadimento esponenziale è espresso dall'equazione:
λ è un numero detto costante di decadimento. La soluzione di questa equazione è
N(t) è la quantità al tempo t, e N0 = N(0) è la quantità iniziale, al tempo t=0.
In alternativa si può scrivere
dove:
è detta costante di tempo ed è il tempo necessario a ridurre la quantità iniziale di circa il 63,21%.
Il momento esatto in cui un atomo instabile decadrà in uno più stabile è assolutamente casuale e impredicibile. Ciò che si può fare, dato un campione di un particolare isotopo, è notare che il numero di decadimenti rispetta una precisa legge statistica. Il numero di decadimenti che ci si aspetta avvenga in un intervallo dt è proporzionale al numero N di atomi presenti. Questa legge può essere descritta tramite l'equazione del decadimento esponenziale. Oltre alla costante di decadimento λ, il decadimento radioattivo è caratterizzato da un'altra costante chiamata vita media. Ogni atomo vive per un tempo preciso prima di decadere e la vita media rappresenta appunto la media aritmetica sui tempi di vita di tutti gli atomi della stessa specie. La vita media viene rappresentata dal simbolo τ , legato a λ dalla:
che è la costante di tempo.
Un altro parametro molto usato per descrivere un decadimento radioattivo è dato dalla emivita o tempo di dimezzamento t1/2. Dato un campione di un particolare radionuclide, il tempo di dimezzamento ci dice dopo quanto tempo saranno decaduti un numero di atomi pari alla metà del totale, ed è legato alla vita media dalla relazione:
Subscribe to:
Posts (Atom)