http://en.wikipedia.org/wiki/Liquid_mirror_telescope
Liquid mirror telescopes are telescopes with mirrors made with a reflective liquid. The most common liquid used is mercury. The container for the liquid is rotating so that the liquid assumes a paraboloidal shape. A paraboloidal shape is precisely the shape needed for the primary mirror of a telescope. The rotating liquid assumes the paraboloidal shape regardless of the container's shape. Liquid mirrors can be a low cost alternative to conventional large telescopes. Compared to a solid glass mirror that must be cast, ground, and polished, a rotating liquid metal mirror is much less expensive to manufacture.
"Isaac Newton noted that the free surface of a rotating liquid forms a circular paraboloid and can therefore be used as a telescope, but he could not actually build one because he had no way to stabilize the speed of rotation[citation needed] (the electric motor did not exist yet). The concept was further developed by Ernesto Capocci of the Naples Observatory (1850), but it was not until 1872 that Henry Skey of Dunedin, New Zealand constructed the first working laboratory liquid mirror telescope."
"Another difficulty is that a telescope with a liquid metal mirror can only be used in zenith telescopes that look straight up at the zenith, so it is not suitable for investigations where the telescope must remain pointing at the same location of space ... Currently, the mercury mirror of the Large Zenith Telescope in Canada is the largest liquid metal mirror in operation. It has a diameter of six meters, and rotates at a rate of about 8.5 revolutions per minute."
Showing posts with label science. Show all posts
Showing posts with label science. Show all posts
Friday, 24 May 2013
Thursday, 16 May 2013
Deep Space Beacon
Pulsed gamma rays from the Vela pulsar from photons detected by Fermi's Large Area Telescope. The Vela pulsar is the brightest persistent source of gamma rays in the sky. The bluer colour in the latter part of the pulse indicates the presence of gamma rays with energies exceeding a billion electron volts (1 GeV). For comparison, visible light has energies between two and three electron volts. Red indicates gamma rays with energies less than 300 million electron volts (MeV); green, gamma rays between 300 MeV and 1 GeV; and blue shows gamma rays greater than 1 GeV. The image frame is 30 degrees across. The background, which shows diffuse gamma-ray emission from the Milky Way, is about 15 times brighter here than it actually is.
Source Goddard Space Flight Center
Author Roger Romani (Stanford University) (Lead), Lucas Guillemot (CENBG), Francis Reddy (SPSYS)
Source Goddard Space Flight Center
Author Roger Romani (Stanford University) (Lead), Lucas Guillemot (CENBG), Francis Reddy (SPSYS)
GAMMA RAYS and Gamma-Ray Burst
Gamma rays have the smallest wavelengths and the most energy of any wave in the electromagnetic spectrum. ... http://missionscience.nasa.gov/ems/12_gammarays.html
Gamma-ray bursts (GRBs) are flashes of gamma rays associated with extremely energetic explosions that have been observed in distant galaxies. They are the brightest electromagnetic events known to occur in the universe.[1] Bursts can last from ten milliseconds to several minutes. The initial burst is usually followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave and radio).[2] http://en.wikipedia.org/wiki/Gamma-ray_burst...
On April 27, 2013, NASA's Fermi and Swift satellites detected a strong signal from the brightest gamma-ray burst in decades. Because this was relatively close, it was thousands of times brighter than the typical gamma-ray bursts that are seen by Swift every few days. Scientists are now scrambling to learn more....
http://edition.cnn.com/2013/05/06/opinion/urry-gamma-ray-burst/index.html?sr=sharebar_twitter
Gamma-ray bursts (GRBs) are flashes of gamma rays associated with extremely energetic explosions that have been observed in distant galaxies. They are the brightest electromagnetic events known to occur in the universe.[1] Bursts can last from ten milliseconds to several minutes. The initial burst is usually followed by a longer-lived "afterglow" emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave and radio).[2] http://en.wikipedia.org/wiki/Gamma-ray_burst...
On April 27, 2013, NASA's Fermi and Swift satellites detected a strong signal from the brightest gamma-ray burst in decades. Because this was relatively close, it was thousands of times brighter than the typical gamma-ray bursts that are seen by Swift every few days. Scientists are now scrambling to learn more....
http://edition.cnn.com/2013/05/06/opinion/urry-gamma-ray-burst/index.html?sr=sharebar_twitter
Thursday, 1 March 2012
Why is the ocean blue?
"Why is the ocean blue? Speculation about the blue color of the ocean, as seen from above, goes way back. Lord Rayleigh claimed it was simply reflection of the blue sky. The correct explanation required combining the 19th-century ideas of Robert Bunsen, who felt that the color depended on light absorption by water, and Jacques-Louis Soret, who felt that the color was entirely due to scattering. C. V. Raman pointed out the importance of molecular scattering, and in 1923 Vasily Shuleikin combined those ideas to develop a complete explanation of the color of the sea."
In Physics Today, Shedding new light on light in the ocean
Tommy D. Dickey, George W. Kattawar, and Kenneth J. Voss
April 2011, http://dx.doi.org/10.1063/1.3580492
Recent advances are making it possible for optical oceanographers to solve a host of pressing environmental problems.
Tommy D. Dickey, George W. Kattawar, and Kenneth J. Voss
April 2011, http://dx.doi.org/10.1063/1.3580492
Recent advances are making it possible for optical oceanographers to solve a host of pressing environmental problems.
Friday, 5 August 2011
Collision may have shaped the Moon
"Differences between the near and far sides of the Moon could be the result of a collision between the Moon and a "Trojan" companion that occurred billions of years ago. That is the conclusion of geophysicists in the US and Switzerland who have done computer simulations on how the Moon would be affected by such a massive impact."
Trojan collision may have shaped the Moon - physicsworld.com
Thursday, 30 June 2011
Being a red blood cell
"Nanoparticles disguised as red blood cells could be used to deliver anti-cancer drugs directly to a tumour. So say researchers at the University of California at San Diego, whose new technique is unique in its approach to harnessing nanoparticles.
Drug delivery systems that mimic naturally occurring biological molecules seem to be the most efficient when it comes to delivering drugs to tumours. Such systems – usually based on nanoparticles – can also circulate in the body for extended periods of time without being rejected by the body's immune system."
Aircrafts make clouds rain
"For more than 50 years it has been known that aircraft can punch large holes or carve out canals inside clouds as they pass through them – but no-one had been able to explain exactly why this happens. Now researchers in the US have identified the cause by comparing satellite images of clouds with the results of computer modelling. They say that the phenomenon could lead to extra precipitation in the vicinity of major airports."
Thursday, 31 March 2011
Candy floss of rocks
"The earliest rocks in the solar system, from which the terrestrial planets were born, were more like candy floss than hard rock, according to a new analysis carried out by a team including researchers in the UK and Australia. This is the first geological evidence to support the idea that the first solid material in the solar system was extremely porous before it was subsequently compacted into larger bodies, which become the planets we know today."
Earth grew from 'candy floss' rocks - physicsworld.com
Subscribe to:
Posts (Atom)