"Researchers Terry Hunt and Carl Lipo test a new theory that suggests how ancient Easter Islanders may have used ropes to “walk” the moai to their platforms. Mystery of Easter Island, a new NOVA-National Geographic special, airs Wednesday,"
http://ngm.nationalgeographic.com/2012/07/easter-island/walking-statue-video
Friday, 29 June 2012
Friday, 22 June 2012
Alan Turing
Google celebrates the 100th birthday of a computer genius, Alan Mathison Turing (23 June 1912 - 7 June 1954) with a doodle. He is the founder of computer science. He broke the german Enigma-ciphered code.
http://timesofindia.indiatimes.com/tech/news/internet/Alan-Mathison-Turings-100th-birthday-Google-pays-tribute-with-a-doodle/articleshow/14353203.cms
http://timesofindia.indiatimes.com/tech/news/internet/Alan-Mathison-Turings-100th-birthday-Google-pays-tribute-with-a-doodle/articleshow/14353203.cms
Thursday, 21 June 2012
Silicene
Silicene pops out of the plane - physicsworld.com
"Researchers in Japan say that they have made 2D honeycomb crystals of silicon that resemble the carbon-based material graphene. This is the second potential sighting of the material dubbed "silicene"; the other was reported in April by an independent group in Europe. The Japanese research suggests it may be relatively easy to alter the structure of silicene by changing the substrate on which it is grown – which could allow different versions of silicene to be produced with a range of useful electronic properties. However, not all scientists agree that this latest material is actually silicene."
"Researchers in Japan say that they have made 2D honeycomb crystals of silicon that resemble the carbon-based material graphene. This is the second potential sighting of the material dubbed "silicene"; the other was reported in April by an independent group in Europe. The Japanese research suggests it may be relatively easy to alter the structure of silicene by changing the substrate on which it is grown – which could allow different versions of silicene to be produced with a range of useful electronic properties. However, not all scientists agree that this latest material is actually silicene."
Tuesday, 12 June 2012
Ancient Rainfall, Carved in Stone
"Stalactites grow from cave ceilings not as dull cones but often sporting elegant corrugations. In Physical Review Letters, two Italian researchers now explain these mysterious, wavy patterns using standard fluid mechanics. Their theory shows that the horizontal ripples form because spatially periodic patterns arise in the rate of mineral deposits from the water flowing down the stalactite. Starting from this model, climate scientists might in the future use stalactite surface structure to reconstruct variations in precipitation patterns over tens of thousands of years."
Ancient Rainfall, Carved in Stone
Ancient Rainfall, Carved in Stone
Friday, 1 June 2012
Libro sul calore
L'autore, Giovanni Tonzig, mette a disposizione alcuni capitoli pdf del suo libro.
http://www.giovannitonzig.it/loadpage.php?page=fisica_calore
http://www.giovannitonzig.it/loadpage.php?page=fisica_calore
Le pagine sotto elencate sono disponibili in formato PDF.
Domanda trovata in rete: qualcuno sa spiegarmi per bene come si calcola l'entropia in una trasformazione adiabatica irreversibile???
Bisogna capire cosa significa "entropia in una trasformazione", adiabatica o meno. Agli stati di equilibrio possibili di un sistema termodinamico è associata una funzione (detta appunto "di stato") S, chiamata entropia, che tra le altre caratteristiche ha quella di soddisfare le relazionI:
(1) S(B) – S(A) = ∫ (δQ)/T se l'integrale è effettuato lungo una qualsiasi trasformazione reversibile da A a B;
(2) S(B) – S(A) > ∫ (δQ)/T se l'integrale è effettuato lungo una qualsiasi trasformazione irreversibile da A a B.
In particolare, se A e B sono collegabili da una trasformazione adiabatica reversibile allora S(B) – S(A) = 0, cioè non si ha variazione di entropia. Se tu hai due stati A, B e vuoi calcolare esattamente S(B) – S(A), dovrai cercare una trasformazione reversibile (quindi diversa da ogni trasformazione irreversibile di qualunque tipo che abbia portato il sistema da A a B), e calcolare poi ∫ (δQ)/T lungo questa trasformazione reversibile.
Se poi il sistema è formato da un gas perfetto, tutto si semplifica! In questo caso, sempre e comunque,
ΔS = S2 – S1 = n[Cv·ln(T2/T1) + R·ln(V2/V1)]
e quindi basta conoscere i valori delle variabili di stato iniziali e finali (p1,V1,T1), (p2,V2,T2).
Bisogna capire cosa significa "entropia in una trasformazione", adiabatica o meno. Agli stati di equilibrio possibili di un sistema termodinamico è associata una funzione (detta appunto "di stato") S, chiamata entropia, che tra le altre caratteristiche ha quella di soddisfare le relazionI:
(1) S(B) – S(A) = ∫ (δQ)/T se l'integrale è effettuato lungo una qualsiasi trasformazione reversibile da A a B;
(2) S(B) – S(A) > ∫ (δQ)/T se l'integrale è effettuato lungo una qualsiasi trasformazione irreversibile da A a B.
In particolare, se A e B sono collegabili da una trasformazione adiabatica reversibile allora S(B) – S(A) = 0, cioè non si ha variazione di entropia. Se tu hai due stati A, B e vuoi calcolare esattamente S(B) – S(A), dovrai cercare una trasformazione reversibile (quindi diversa da ogni trasformazione irreversibile di qualunque tipo che abbia portato il sistema da A a B), e calcolare poi ∫ (δQ)/T lungo questa trasformazione reversibile.
Se poi il sistema è formato da un gas perfetto, tutto si semplifica! In questo caso, sempre e comunque,
ΔS = S2 – S1 = n[Cv·ln(T2/T1) + R·ln(V2/V1)]
e quindi basta conoscere i valori delle variabili di stato iniziali e finali (p1,V1,T1), (p2,V2,T2).
Sappiamo che una trasformazione adiabatica reversibile è una isoentropica. Prendiamo uno stato iniziale i ed uno stato finale f di un gas perfetto su un'adiabatica.reversibile: Delta S = S_f - S_i = 0.
Dimostrate che Delta S è zero usando l'espressione della variazione dell'entropia per un gas perfetto.
Vedi anche:
http://physics-sparavigna.blogspot.it/2011/06/domanda-di-teoria-50.html
Dimostrate che Delta S è zero usando l'espressione della variazione dell'entropia per un gas perfetto.
Vedi anche:
http://physics-sparavigna.blogspot.it/2011/06/domanda-di-teoria-50.html
Subscribe to:
Posts (Atom)