Friday, 29 April 2016
Dischi, massa e molla
I due dischi in figura, di massa M1 ed M2 e raggio R1 ed R2, sono vincolati a ruotare attorno ad assi passanti per i loro centri. I dischi ruotano senza strisciare su un dischetto di massa trascurabile, anche esso ruotante attorno ad un asse centrale. Una massa M è appesa a un filo inestensibile, avvolto al disco di destra. Il disco a sinistra è collegato con una molla di costante elastica K e lunghezza a riposo nulla ad un punto fisso. Il sistema è inizialmente fermo con la molla scarica (allungamento nullo). Il sistema viene lasciato libero di muoversi. Quale è il massimo abbassamento della massa M?
Energia e corpo rigido
Un disco di massa M e raggio R è posto in un piano verticale. Esso è vincolato al suo centro a un asse orizzontale attorno al quale può ruotare senza attrito. Al suo bordo è fissata una massa m. Inizialmente il disco è tenuto fermo. Viene lasciato libero di ruotare: che velocità angolare avrà quando la massa m passa per il punto più basso?
Wednesday, 20 April 2016
Torque
Adapted from:
Calcoliamo i momenti determinando il braccio delle forze, che in figura vedete dato come gli r perpendicolari.
Il momento risultante delle due forze (net torque) è, in modulo, di 0.24 N.m . Il momento di F1 (F2) è negativo (positivo), perché tende a produrre una rotazione in senso orario (in senso antiorario). Notiamo che i simboli τ_1 e τ_2 sono i moduli dei momenti delle forze. Il risultato positivo indica che l'accelerazione angolare è in senso antiorario. L'unità di misura è N.m, ma non chiamiamoli joules. Il joule reppresenta energia mentre ora non abbiamo energia ma momento della forza.
Torque
(immagine da http://hyperphysics.phy-astr.gsu.edu/hbase/cmms.html)
In Inglese, il momento della forze è il "torque". Questo è un semplice esercizio sull'equilibrio.
Per aver l'equilibrio dell'asta, che è posta su un fulcro in un punto diverso dal centro di massa, uso una massa appesa all'asta ad una distanza opportuna.
Conservazione energia
Una massa scivola dalla quota 2R, partendo da ferma, su un piano inclinato liscio. Il piano inclinato si raccorda con una guida circolare liscia posta in un piano verticale. Determinare dove la massa si stacca dalla pista.
Conservazione dell'energia
nUn corpo puntiforme di massa m scivola lungo una pista liscia che termina in una circonferenza di raggio R, partendo da fermo da una altezza h rispetto il fondo della pista (vedi figura). Determinare il valor minimo di h perché il corpo possa fare il giro completo. Trovato questo valore, determinate la forza esercitata dalla pista sul corpo quando questo si trova nella posizione individuata dall’angolo q pari a 30°.
Subscribe to:
Posts (Atom)