Friday 1 July 2011

v^2

Un automobilista sta guidando a una velocità costante di 80 km/h quando vede un ostacolo sulla strada a 50 m. I freni gli consentono di sviluppare una decelerazione  a = - 6 m/s^2. Riuscirà il guidatore a fermarsi prima dell'ostacolo?  (s^2 significa s al quadrato)

Il moto é rettilineo uniformemente decelerato, ossia con accelerazione costante negativa. Diciamo S lo spazio di frenata, conosciamo accelerazione, velocità iniziale e velocità finale, che deve essere zero. Utilizziamo l'equazione:

vfin^2 = viniz^2 + 2aS

Trasformiamo la velocità in m/s: viniz = 80 km/h = 22,222 m/s.

L’equazione precedente diventa: 0 = (22,222 m/s)^2 + 2⋅(-6 m/s^2)⋅S

Quindi: S = 41,2 m

L'ostacolo è a 50 metri e quindi l'automobilista si ferma prima.

Cinematica con dinamica

Un oggetto viene lanciato su una rampa inclinata di 45° con una velocità iniziale di 30 m/s. Dopo quanto tempo si ferma ? A che altezza dal suolo arriva?


Sia O l'origine. Il riferimento sia paralleo al piano inclinato verso l'alto. La direzione di moto è  positiva quando è erso l’alto. La velocità iniziale risulta positiva e l’accelerazione di gravità (diretta verso il basso)
negativa.  Valuatiamo la componente dell’accelerazione lungo la direzione di moto, che risulta essere: a = -g sen α = - 6,94 m/s (con g indico il modulo dell'acc. di gravità, pari a 9.8m/s^2).
Per calcolare il tempo che occorre all’oggetto per fermarsi devo ricordarmi che la velocità finale, in
questo caso, é nulla, e poi usare la definizione di accelerazione:

a = (vfin - v iniz)/ t

Nel nostro caso: -g sen α = - 6,94  m/s^2= (vfin - v iniz)/ t= (0 -  30 m/s) / t

Quindi:

t = 4,32 s

Per calcolare lo spazio S percorso sulla rampa, ho a disposizione due espressioni:

S = 1/2 a t^2 + viniz t

Si ottiene:

S = 1/2 (- 6,94) (4,32)^2 + 30 ⋅ 4,32 =  64,8 m

La quota H raggiunta sul livello del suolo la si ricava come:

H = S sen α = 64,8 m ⋅ sen 45° = 45,8 m

Asta

Esercizio sulla Statica dei Corpi Rigidi,  Prof. T.Papa.

Thursday 30 June 2011

Being a red blood cell


"Nanoparticles disguised as red blood cells could be used to deliver anti-cancer drugs directly to a tumour. So say researchers at the University of California at San Diego, whose new technique is unique in its approach to harnessing nanoparticles.
Drug delivery systems that mimic naturally occurring biological molecules seem to be the most efficient when it comes to delivering drugs to tumours. Such systems – usually based on nanoparticles – can also circulate in the body for extended periods of time without being rejected by the body's immune system."
Nanoparticles play at being red blood cells - physicsworld.com

Aircrafts make clouds rain


"For more than 50 years it has been known that aircraft can punch large holes or carve out canals inside clouds as they pass through them – but no-one had been able to explain exactly why this happens. Now researchers in the US have identified the cause by comparing satellite images of clouds with the results of computer modelling. They say that the phenomenon could lead to extra precipitation in the vicinity of major airports."
Aircraft punch holes in clouds and make it rain - physicsworld.com

Monday 27 June 2011

A "Mobius" graphene

"In 1858, August Mobius dreamt up a shape with a single surface and only one edge. The Mobius strip has fascinated children and scientists alike since then.
How small can these shapes be? In December 2003, German chemists made a molecular Mobius strip out of a benzene-like ring modified with a belt-like carbon structure. Since then, various groups have produced increasingly bizarre Mobius-type molecules, including one that can switch back and forth from a Mobius to an ordinary strip when zapped with light.
Of course, the obvious choice of material with which to make Mobius molecules is graphene. But this particular trick has eluded chemists, an omission that clearly irks. Now Douglas Galvao from the Universidade Estadual de Campinas in Sao Paolo, Brazil, and buddies have decided to grip the bull by the horns and calculated the properties that Mobius carbon might have."New form of "Mobius" carbon predicted - Technology Review
New form of "Mobius" carbon predicted - Technology Review

Friday 24 June 2011

Hot quarks break free

"Physicists in the US, India and China have calculated that quarks and gluons can break free from their confinement inside protons and neutrons at a temperature of around two trillion degrees Kelvin – the temperature of the universe a fraction of a second after the Big Bang. The researchers arrived at this figure by combining the results of supercomputer calculations and heavy-ion collision experiments. They say that it puts our knowledge of quark matter on a firmer footing."

Quarks break free at two trillion degrees - physicsworld.com

Wrinklons

"A new quasiparticle called the "wrinklon" could help explain why materials as diverse as graphene and household curtains wrinkle in much the same way – despite their very different length scales. The particle has been introduced by researchers in Belgium, France and the US as a result of measurements on a wide range of materials on length scales from micrometres to metres. While the work may not lead to more attractive curtains, wrinkles do turn out to affect the electronic properties of graphene and the analysis could therefore influence the development of graphene-based devices."
Introducing the 'wrinklon' - physicsworld.com

Voyager mission at the edge of the solar system

"Recent data from the spacecraft have shown a gentle decrease in the velocity of the solar wind at the heliopause – the outer boundary of the heliosheath – not the abrupt discontinuity predicted by current theories. Also, scientists looking at other data from both Voyager 1 and Voyager 2 have found that the magnetic field in the heliosheath is a tumultuous foam of magnetic bubbles, as compared to the graceful arcs of magnetic field lines they had expected."
More surprises for the Voyager mission at the edge of the solar system - physicsworld.com

Thursday 16 June 2011

Peer pressure keeps planets young...

"Two US astrophysicists claim they have answered an important question about how planets form: why don't young planets get pushed into their companion stars before they have a chance to grow? It turns out that a little company is enough to keep them there, say the researchers, who argue that multiple planets moving through a rocky disk can prevent one another from falling into the star."
Peer pressure keeps young planets growing - physicsworld.com