Wednesday 20 April 2016

Torque

Adapted from:

A disc rotates about an axis O, which is passing through its center and perpendicular to the disc. It rotates by the application of two forces. A force of magnitude 11 N is exerted at a distance of 0.34 m from the axis and at an angle of 58° from a radial line extending from the axis through the point of application Q of the force. A second force of magnitude 15 N is exerted at a distance of 0.26 m from the axis and at an angle of 119° from a radial line extending from the axis through the point of application P of the force. Determine the net torque on the disc about its center and which way the net torque accelerates the disc.


Calcoliamo i momenti determinando il braccio delle forze, che in figura vedete dato come gli r perpendicolari.




Il momento risultante delle due forze (net torque) è, in modulo, di 0.24 N.m . Il momento di F1 (F2) è negativo (positivo), perché tende a produrre una rotazione in senso orario (in senso antiorario). Notiamo che i simboli τ_1 e τ_2 sono i moduli dei momenti delle forze. Il risultato positivo indica che l'accelerazione angolare è in senso antiorario.  L'unità di misura è  N.m, ma non chiamiamoli joules. Il joule reppresenta energia mentre ora non abbiamo energia ma momento della forza. 


Torque


In Inglese, il momento della forze è il "torque". Questo è un semplice esercizio sull'equilibrio.
Per aver l'equilibrio dell'asta, che è posta su un fulcro in un punto diverso dal centro di massa, uso una massa appesa all'asta ad una distanza opportuna. 

Fasi Lunari in Inglese


Conservazione energia


Una massa scivola dalla quota 2R, partendo da ferma, su un piano inclinato liscio. Il piano inclinato si raccorda con una guida circolare liscia posta in un piano verticale. Determinare dove la massa si stacca dalla pista.




Conservazione dell'energia

nUn corpo puntiforme di massa m scivola lungo una pista liscia che termina in una circonferenza di raggio R, partendo da fermo da una altezza h rispetto il fondo della pista (vedi figura). Determinare il valor minimo di h perché il corpo possa fare il giro completo. Trovato questo valore, determinate la forza esercitata dalla pista sul corpo quando questo si trova nella posizione individuata dall’angolo q pari a 30°.







Due problemi sull' Impulso

Un blocco di massa m si muove su una pista rettilinea orizzontale senza attrito con velocità V. Ad un certo punto, attraversa un tratto molto breve che presenta attrito. Poi prosegue di nuovo sulla pista liscia con velocità V/2. Quale è l’impulso della pista sul blocco?

Una macchina di massa m si muove su una strada rettilinea con velocità V. Ad un certo punto, il guidato frena per un tratto molto breve. Poi prosegue di nuovo sulla strada con velocità V/2. Quale è l’impulso della strada sulla macchina?

Problema urto

In un test d’urto, un’auto di massa m=1500 kg urta contro un muro. La velocità iniziale ha modulo v_i=15.0 m/s e quella finale v_f= 2.6 m/s. Se la durata dell’urto è di 0.15 s, determinate l’impulso dovuto all’urto e la forza media esercitata sull’auto.





Problema conservazione energia




Problema doppio piano inclinato




Problema moto centro di massa

Un cannone ha sparato una granata con velocità, all’uscita dalla bocca da fuoco, di 20m/s a un angolo di 60° sopra il piano orizzontale. Al vertice della traiettoria la granata esplode rompendosi in due frammenti di uguale massa. Uno dei due, che immediatamente dopo l’esplosione ha velocità nulla, cade verticalmente. A che distanza dal cannone atterrerà l’altro frammento?






Problema conservazione energia

Un pendolo è costituito da una pallina di massa m sospesa a un filo di lunghezza L=1m. Il pendolo viene allontanato di un angolo di 30 gradi dalla verticale, verso sinistra, e abbandonato a sé stesso. Il filo urta contro un piolo situato sulla verticale passante per il punto di sospensione a una distanza d=0.5m da quest’ultimo, accorciando in tal modo la lunghezza del pendolo. Si trovi l’angolo q massimo tra il filo e la verticale quando la pallina è a destra del piolo [42.94°]



Problema Momento Angolare



L'esercizio serve per far pratica col calcolo vettoriale e vedere un'applicazione della seconda equazione cardinale dei sistemi.

Friday 8 April 2016

Problema piattaforma in equilibrio

Nel calcolo si è considerata g = 10 m/s^2.

Problema dinamica e moto relativo

Sopra un piano orizzontale è poggiato un cubo di massa M, che può scorrere senza attrito sul piano orizzontale. Sopra il cubo è poggiato un altro cubetto di massa m a distanza d dalla faccia di sinistra del cubo più grande. All'istante iniziale, quando tutto è fermo, al cubo è applicata una forza F orizzontale. Questa forza è costante; dopo t il cubetto cade. Calcolare il coefficiente di attrito tra i due cubi. (Dati del problema M=50 kg, m=10 kg, d=50 cm, F=100 N, t=2 s)







Problema momento impulso

Una sbarra di lunghezza L=40 cm, di massa trascurabile, che è incernierata ad un estremo ad un perno fisso, può muoversi liberamente in un piano verticale. La sbarra ha attaccata all’altro estremo una massa m di 2.5 kg. La sbarra e la massa sono inizialmente ferme, con l’asta verticale e la massa in basso. La massa riceve un impulso e compie un quarto di giro. Determinare la velocità angolare che assume inizialmente la massa e l'impulso che viene applicato.




Problema dinamica

Una persona si trova su una pedana mobile. Tra la pedana ed il pavimento l’attrito è trascurabile. Tra la persona e la pedana c’è attrito statico. La persona tira la fune e nella fune si sviluppa una tensione T di 20 N. La massa M è di 60 kg, la pedana è di 20 kg. Trovate l’accelerazione di persona e pedana.


La persona non scivola sulla pedana. C'è l'attrito statico che crea la forza A orizzontale. Le due figure con le frecce colorate sono i diagrammi di corpo libero per la persona (M) e per la pedana (m).

Problema dinamica

Calcolare l’accelerazione del sistema fatto da una massa m e da una pedana M, come in figura. Il filo è inestensibile e privo di massa, così come la carrucola. La massa mobile è appoggiata alla parete verticale del carrello. Non vi sono attriti.


Problema dinamica

Una persona si trova su una pedana mobile. Tra la pedana ed il pavimento l’attrito è trascurabile. Tra la persona e la pedana c’è attrito statico. La persona tira la fune e nella fune si sviluppa una tensione T di 20 N. La massa M è di 60 kg, la pedana è di 20 kg. Trovate l’accelerazione di persona e pedana.



Pedana M:   M a = T  (verso destra);    M g = N  dove N è l'azione del pavimento

Massa m: ma = mg ─ T (verso il basso) 

La fune  è inestensibile, sommo  equazioni

Ma + ma = T + mg -T = mg
a = mg/(M+m)