Friday, 18 November 2011

Turning darkness into light

"Quantum mechanics tells us that the vacuum is not empty but is filled with virtual particles that pop into and out of existence. Normally these particles are hidden from our view, but now a team of physicists has used the electrical equivalent of an ultrafast mirror to convert virtual photons into real electromagnetic radiation. Known as the dynamical Casimir effect, it was first predicted more than 40 years ago. The static Casimir effect ... 1948, involves two perfectly reflecting parallel mirrors that, when placed in a vacuum, will be attracted to one another. This attractive force is caused by the radiation pressure exerted by virtual photons outside the mirrors and the fact that this pressure exceeds the pressure between the mirrors because of the limited number of modes of electromagnetic vibration that are permitted within this gap. In other words, the force results from a mismatch of electromagnetic modes in space. The dynamical effect was proposed by Gerald Moore in 1970 and is caused by a mismatch of modes in time. The phase of an electromagnetic wave goes to zero at the surface of a mirror, if that mirror is a perfect electrical conductor. When the mirror is moved slowly through a vacuum, this zero point can move with the mirror. However, if the mirror is moved at a significant fraction of the speed of light, then the electromagnetic field does not have time to adjust but instead becomes excited and as a result generates real photons. Put another way, the mirror prises virtual photons (always produced in pairs) apart so that instead of rapidly annihilating, the particles are free to remain as real photons."

How to turn darkness into light - physicsworld.com