Friday, 12 July 2013

Chords in trigonometry


TrigonometricChord.svg
Source: Wikipedia.
Chords were used extensively in the early development of trigonometry. The first known trigonometric table, compiled by Hipparchustabulated the value of the chord function for every 7.5 degrees. In the second century AD, Ptolemy of Alexandria compiled a more extensive table of chords in his book on astronomy, giving the value of the chord for angles ranging from 1/2 degree to 180 degrees by increments of half a degree. The circle was of diameter 120, and the chord lengths are accurate to two base-60 digits after the integer part. The chord function is defined geometrically as in the picture to the left. The chord of an angle is the length of the chord between two points on a unit circle separated by that angle. The chord function can be related to the modern sine function, by taking one of the points to be (1,0), and the other point to be (cos \theta, sin \theta), and then using the Pythagorean theorem to calculate the chord length:
 \mathrm{crd}\ \theta = \sqrt{(1-\cos \theta)^2+\sin^2 \theta} = \sqrt{2-2\cos \theta} =2 \sin \left(\frac{\theta }{2}\right).
The last step uses the half-angle formula. Much as modern trigonometry is built on the sine function, ancient trigonometry was built on the chord function.
 The chord function satisfies many identities analogous to well-known modern ones:
NameSine-basedChord-based
Pythagorean\sin^2 \theta + \cos^2 \theta = 1 \, \mathrm{crd}^2 \theta + \mathrm{crd}^2 (180^\circ - \theta) = 4 \,
Half-angle\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos \theta}{2}} \, \mathrm{crd}\ \frac{\theta}{2} = \pm \sqrt{2-\mathrm{crd}(180^\circ - \theta)} \,
Apothem (a)c=2 \sqrt{r^2- a^2}c=\sqrt{D ^2-4 a^2}
Angle (θ)c=2  r \sin \left(\frac{\theta }{2}\right)c=D  \sin \left(\frac{\theta }{2}\right)

Tuesday, 18 June 2013

Pendolo fisico , piccole oscillazioni







Moti alternati

Dal Progetto Glues del Prof. M. Baronti
http://www.diptem.unige.it/baronti/GLUES/Glues_negli%20anni.htm

Adattato dal progetto sul moto alternato





The Remarkable Properties of Mythological Social Networks | MIT Technology Review

"Today,  P J Miranda at the Federal Technological University of Paraná in Brazil and a couple of pals study the social network between characters in Homer’s ancient Greek poem, the Odyssey. Their conclusion is that this social network bears remarkable similarities to Facebook, Twitter and the like and that this may offer an important clue about the origin of this ancient story."
The Remarkable Properties of Mythological Social Networks | MIT Technology Review

Monday, 17 June 2013

Festival Beethoven


Dal 24 al 30 giugno 2013, Piazza San Carlo


Le 9 Sinfonie con l’Orchestra Sinfonica Nazionale della RAI e il Coro del Teatro Regio. I Concerti con l’Orchestra Filarmonica di Torino e grandi interpreti.

Friday, 14 June 2013

Moving sand dunes on the Google Earth

Several methods exist for surveying the dunes and estimate their migration rate. Among methods suitable for the macroscopic scale, the use of the satellite images available on Google Earth is a convenient resource, in particular because of its time series. Some examples at http://arxiv.org/abs/1301.1290 (arXiv: January 2013)


Thursday, 13 June 2013

Positive or negative? Nanoparticle surface charge affects cell-membrane interactions - physicsworld.com

Positive or negative? Nanoparticle surface charge affects cell-membrane interactions - physicsworld.com

Monopoles unwind magnetic whorls - physicsworld.com

Monopoles unwind magnetic whorls - physicsworld.com

Bob e Joe, lavavetri

Two window washers, Bob and Joe, are on a 3.00-m-long, 345-N scaffold supported by two cables attached to its ends. Bob weighs 750 N and stands 1.00 m from the left end, as shown in Figure. Two meters from the left end is the 500-N washing equipment. Joe is 0.500 m from the right end and weighs 1 000 N. Given that the scaffold is in rotational and translational equilibrium, what are the forces on each cable? 


Risolviamo con equilibrio di forze e di momenti usando lo schema seguente per masse, distanze e tensioni funi.

T_o + T_d = m_a g + m_b g + m_c g

a m_a  + b m_b + c m_c  - d T_d = 0  (polo in o)

Dato che le masse e le distanze sono note, le due equazioni mi danno le due tensioni funi.

L'orso affamato

A hungry 700-N bear walks out on a beam in an attempt to retrieve some “goodies” hanging at the end. The beam is uniform, weighs 200 N, and is 6.00 m long; the goodies weigh 80.0 N. (a) Draw a free-body diagram of the beam. (b) When the bear is at x = 1.00 m, find the tension in the wire and the components of the reaction force at the hinge. (c) If the wire can withstand a maximum tension of 900 N, what is the maximum distance the bear can walk before the wire breaks? 





Facciamo il diagramma delle forze.  Sulla trave agiscono la gravita P, verticale verso il basso, l'azione dell'orso Po dovuta al suo peso, verticale verso il basso, l'azione del cestino, Pc, che è verticale verso il basso, la tensione della fune T che ha componente verticale verso l'alto di modulo T sen60°, e orizzontale di modulo T cos60°, verso la parete. Allora c'è anche l'azione della parete, A, che ha due componenti, verticale Av e orizzontale Ah. Quella orizzontale è pari alla componente orizzontale della tensione T, cambiata di segno. Mettiamo giù le equazioni di forze e momenti in equilibro

Il polo lo metto dove la trave si inserisce nella parete.

P+Po + Pc = Av + T sin60° (forze verticali)
x Po + LP/2+ L Pc = L T sin60° (momenti)
Ah = T cos60°  (forze orizzontali)

Allora:  −(LP+L Po +L Pc )= −(L Av + L T sin60°)
x Po + LP/2 + L Pc = L T sin60°

sommo le due equazioni: Po (L−x) +PL/2= L Av  da cui ho Av:
Av  = Po (L−x)/L +P/2

Poi: Po +P+ Pc = Po (L−x)/L +P/2 + T sin60°, da cui T:
T= (Po +P+ Pc − Po (L−x)/L −P/2 )/sin60°.

 

Wednesday, 12 June 2013

Tarzan, whose mass is 80.0 kg, swings from a 3.00-m vine that is horizontal when he starts. At the bottom of his arc,  he picks up 60.0-kg Jane in a perfectly inelastic collision. What is the height of the highest tree limb they can reach  on their upward swing?


Tarzan, che ha una massa di 80 kg, si lancia con una liana  che è orizzontale quando lui parte. Nel punto più basso dell'arco della sua traiettoria, Tarzan acchiappa Jane (60 kg) con una collisione completamente anelastica. Quale è la'ltezza del ramo d'albero più alto cui possono arrivare risalendo nell'oscillazione con la liana?

m_T g H = 1/2 m_T v^2 (cons. energy)
m_T v = (m_T + m_J) V (perf. inelastic collision)
(m_T + m_J) g h = 1/2 (m_T + m_J) V^2 (cons. energy)

Archimede. Arte e scienza dell'invenzione / Mostre - Musei Capitolini


Archimede. Arte e scienza dell'invenzione / Mostre - Musei Capitolini

Luogo: Musei Capitolini, Palazzo dei Conservatori e Palazzo Caffarelli
Orario: Dal 31 maggio 2013 al 12 gennaio 2014.
Martedì-domenica 9.00-20.00 (la biglietteria chiude un'ora prima).

Archimede e la trisezione dell'angolo

Da wikipedia http://it.wikipedia.org/wiki/Trisezione_dell'angolo#Costruzioni_con_riga_e_compasso

"Archimede, come i suoi predecessori, fu attratto dai tre famosi problemi della geometria: la sua famosa spirale fornì la soluzione a due di questi problemi. La spirale viene definita come il luogo piano di un punto che, partendo dall'estremo di un raggio o semiretta, si sposta uniformemente lungo questo raggio mentre il raggio a sua volta ruota uniformemente intorno al suo estremo. Espressa in coordinate polari, l'equazione della spirale è r=a theta. Data una spirale del genere viene facilmente effettuata la trisezione di un angolo. L'angolo è disposto in modo che il vertice e uno dei lati coincidano con il punto iniziale della spirale e con la posizione iniziale della semiretta che ruota. L'altro lato dell'angolo intersecherà la spirale in un punto che individua su questo lato un segmento lungo R (vedi figura). Tracciamo la circonferenza con centro nell'origine e raggio pari ad R, tale circonferenza individua un segmento sull'asse delle y. Dividiamo in tre parti questo segmento e disegniamo archi di circonferenza con centro nell'origine e raggio pari ad 2R/3 e R/3, tali archi intersecano la spirale in due punti che individuano le due linee che trisecano l'angolo di partenza. Con questo metodo ogni angolo può essere diviso in un numero qualsiasi di parti uguali."


Euclide e l'esagono regolare

Un esagono regolare è costruibile con riga e compasso. L'immagine seguente è un'animazione che mostra passo-passo il metodo suggerito da Euclide nei suoi Elementi (Libro IV, Proposizione 15). Da Wikipedia




Diabolicamente Rotor


tratto dal libro, Per amore della fisica. Dall'arcobaleno ai confini del tempo,  di Walter Lewin, Warren Goldstein
EDIZIONI DEDALO, 2013 - 356 pagine
"La fisica può essere bella ed entusiasmante, e pervade in ogni istante il mondo attorno a noi; dobbiamo solo imparare a vederla". Grande divulgatore e web star del MIT, Lewin ci guida alla scoperta degli aspetti più affascinanti della fisica e del mondo che ci circonda. Con l'aiuto di esperimenti e indimenticabili dimostrazioni pratiche, in un susseguirsi di pagine tanto interessanti quanto divertenti, ci farà assaporare la bellezza e l'armonia dei princìpi che descrivono la natura. Perché riusciamo a bere con una cannuccia? Qual era il suono del Big Bang? Cos'è il magnetismo? Perché dopo un fulmine l'aria ha un odore così particolare? Cosa sono i raggi X? Cosa c'è alla fine dell'arcobaleno? Rispondendo a queste e a molte altre domande, Lewin ci mostra che amare la fisica è possibile e ci offre un dono di valore inestimabile: ci insegna ad ampliare i nostri orizzonti e a guardare il mondo con gli occhi di uno scienziato. E il mondo non sarà mai più lo stesso.

VEDI ESERCIZIO

n.9 - ampiezza oscillazione

A large block P executes horizontal simple harmonic motion as it slides across a frictionless surface with a frequency f = 1.50 Hz. Block B rests on it, as shown in Figure, and the coefficient of static friction between the two is μs = 0.600. What maximum amplitude of oscillation can the system have if block B is not to slip?


Un grande blocco P oscilla orizzontalmente con moto armonico semplice, muovendosi su una superficie priva d'attrito. La frequenza dell'oscillazione è pari a f=1.50 Hz. Il blocco B è in quiete su di esso, come si vede in figura. Il coefficiente di attrito statico tra i due blocchi è pari a mu_s=0.600. Quale è la massima ampiezza dell'oscillazione che il sistema può avere affinché il blocco B non scivoli su P?

Soluzione: Se il blocco B non scivola su P, vuol dire che hanno entrambi la stessa x, la stessa v e quindi la stessa accelerazione a. Quale è la forza che accelera orizzontalmente B? C'è solo l'attrito F che è orizzontale.

Quindi: m a = F. L'attrito statico è una forza F minore o uguale a (mu_s m g). In modulo:

[m A omega^2  cos (omega t + phi) ] = F, che è minore o uguale a [mu_s m g]

Il valore massimo a sinistra si ha per il coseno uguale a uno:

[m A omega^2 ] minore  o uguale [mu_s m g ]

Consideriamo l'ampiezza A massima: [A omega^2 ] = [mu_s g]

A = [mu_s g]/[omega^2]=[mu_s g]/[2 pi f]^2= (0.6x10)/(2x3.14x1.50)^2 metri

Monday, 10 June 2013

n.23 - una pallina rotola su una pista

Una pallina rotola su una pista posta in un piano verticale. Nota bene: il moto della pallina è di puro  rotolamento. Quale è il minimo valore di h, che le consenta, partendo da ferma di arrivare in 3? (problema proposto da A.Strigazzi)






Nel punto più alto ci sono forze verticali: peso ed N. Poi c'è l'attrito statico per via del rotolamento.
MA, se N=0, questo attrito, che deve essere minore o uguale a mu_s N, è nullo.
Quindi N=0, implica F_s =0.


Confrontate la (6) col risultato di

Alfredo usa una pallina piena, non cava.

n.10 - Due blocchi e una molla

Esercizio di Alfredo Strigazzi


n.9 - Un camion


Esercizio Alfredo Strigazzi


n.10 - Massa e due molle

Esercizio esame prof. Alfredo Strigazzi



Thursday, 30 May 2013

Arduino Robot

" The Arduino Robot is the first robotics platform officially supported by Arduino.cc. It arrives fully assembled and nearly ready to run with no soldering required. Just plug in the color LCD screen, charge up the batteries (included), launch the Arduino IDE and upload the example code over the USB cable. The robot comes with a number of integrated inputs; two potentiometers, five buttons, a digital compass, five floor sensors, and an SD card reader. It also has a speaker, two motors, and a color screen as outputs, and plenty of prototyping space and TinkerKit connectors for expansion"
http://blog.makezine.com/2013/05/28/now-available-in-the-maker-shed-the-new-arduino-robot/

Friday, 24 May 2013

Linothorax

Da Wikipedia
"The linothorax is a modern term conventionally used to describe a type of upper body armor used by the Ancient Greeks, as well as other civilizations, from the Mycenaean Period through the Hellenistic Period. It is based on the Greek λινοθώραξ (in Homer λινοθώρηξ), which strictly is an adjective meaning "wearing a breastplate of linen" (and is not a noun meaning "linen armor" as often stated); the "linothorax" was made of linen, while a "thorax" was made of metal. The earliest attested account of a "linothorax" used for battle is recorded in Book 2 of Homer's Iliad (2.529 and 2.830). It is worn by Ajax the Lesser and is described in brief. Homer, composing long before the great armies of Athens, Thebes, Sparta or Alexander the Great, surely understood what the armor was. But the extent to which it was used can not be fully determined. An educated guess can be made, however, based on its use by Alexander the Great, and its mention by other sources such as Herodotus (2.182, 3.47, 7.63), Livy (4.19.2–20.7) and Strabo (Geography, 3.3.6, 13.1.10), and many others. The linothorax appears to have been used in place of the bronze 'bell cuirass' as the popular choice of armour for Greek hoplites, starting perhaps around the late seventh century and early sixth century B.C. Its high point, if vase paintings, sculptural reliefs and artistic depictions are to be believed, corresponds with the time of the Persian Wars. By the time of the Peloponnesian War it was still used, and continued to seemingly flourish well into the Hellenistic Period."

After 150 years, the Stirling motor lives

The Sydney Morning Herald, 26 May, 1975

Ford Torino Stirling Special


Ford Torino Stirling Special

da
Modello matematico di motore Stirling accoppiato ad un generatore
elettrico lineare,  Michele Favaron
http://tesi.cab.unipd.it/37661/1/Modello_matematico_di_motore_Stirling_accoppiato_ad_un_generatore_lineare.pdf

Motore di Stirling fatto in casa

Su YouTube cercando "motore stirling fatto in casa" trovate diversi progetti per crearvi il vostro "motore".

A liquid telescope

http://en.wikipedia.org/wiki/Liquid_mirror_telescope

Liquid mirror telescopes are telescopes with mirrors made with a reflective liquid. The most common liquid used is mercury. The container for the liquid is rotating so that the liquid assumes a paraboloidal shape. A paraboloidal shape is precisely the shape needed for the primary mirror of a telescope. The rotating liquid assumes the paraboloidal shape regardless of the container's shape.  Liquid mirrors can be a low cost alternative to conventional large telescopes. Compared to a solid glass mirror that must be cast, ground, and polished, a rotating liquid metal mirror is much less expensive to manufacture.

"Isaac Newton noted that the free surface of a rotating liquid forms a circular paraboloid and can therefore be used as a telescope, but he could not actually build one because he had no way to stabilize the speed of rotation[citation needed] (the electric motor did not exist yet). The concept was further developed by Ernesto Capocci of the Naples Observatory (1850), but it was not until 1872 that Henry Skey of Dunedin, New Zealand constructed the first working laboratory liquid mirror telescope."

"Another difficulty is that a telescope with a liquid metal mirror can only be used in zenith telescopes that look straight up at the zenith, so it is not suitable for investigations where the telescope must remain pointing at the same location of space ... Currently, the mercury mirror of the Large Zenith Telescope in Canada is the largest liquid metal mirror in operation. It has a diameter of six meters, and rotates at a rate of about 8.5 revolutions per minute."

Variazione entropia


Un esercizio del prof. Mussino che propone un semplice calcolo della variazione d'entropia.


Un sistema termodinamico formato ...

Sempre un esame Prfo.Mussino

Una mole di gas ideale ...


Problema esame Prof. Mussino

n.5 punto di massa ....

Problema d'esame del Prof. Mussino

Un punto di massa m viene lasciato dalla posizione A con velocità vo= 10 m/s lungo un piano inclinato con angolo θ = 30°; h vale 0.26 m, il coefficiente di attrito dinamico è μ=0.1. Calcolare quanto tempo impiega il punto per arrivare nella posizione B e quanto dovrebbe valere μ per far sì che il punto arrivi in B con velocità nulla.





Un gas ideale biatomico ...



Il ciclo di Carnot

Al link
http://books.google.it/books/about/R%C3%A9flexions_sur_la_puissance_motrice_du.html?id=YcY9AAAAMAAJ&redir_esc=y
il libro di Carnot dove descrve il ciclo.

Alcune pagine di una versione inglese del 1897






Nicolas Léonard Sadi Carnot

http://en.wikipedia.org/wiki/Nicolas_L%C3%A9onard_Sadi_Carnot


Carnot's Reflections on the Motive Power of Fire 

When Carnot began working on his book, steam engines had achieved widely recognized economic and industrial importance, but there had been no real scientific study of them. Newcomen had invented the first piston-operated steam engine over a century before, in 1712; some 50 years after that, James Watt made his celebrated improvements, which were responsible for greatly increasing the efficiency and practicality of steam engines. Compound engines (engines with more than one stage of expansion) had already been invented, and there was even a crude form of internal-combustion engine, with which Carnot was familiar and which he described in some detail in his book. Although there existed some intuitive understanding of the workings of engines, scientific theory for their operation was almost nonexistent. In 1824 the principle of conservation of energy was still poorly developed and controversial, and an exact formulation of the first law of thermodynamicswas still more than a decade away; the mechanical equivalence of heat would not be formulated for another two decades. The prevalent theory of heat was the caloric theory, which regarded heat as a sort of weightless and invisible fluid that flowed when out of equilibrium.

Engineers in Carnot's time had tried, by means such as highly pressurized steam and the use of fluids, to improve the efficiency of engines. In these early stages of engine development, the efficiency of a typical engine — the useful work it was able to do when a given quantity of fuelwas burned — was only 3%.

The Carnot Cycle 

Carnot sought to answer two questions about the operation of heat engines: "Is the work available from a heat source potentially unbounded?" and "Can heat engines in principle be improved by replacing the steam with some other working fluid or gas?" He attempted to answer these in a memoir, published as a popular work in 1824 when he was only 28 years old. It was entitled Réflexions sur la Puissance Motrice du Feu ("Reflections on the Motive Power of Fire"). The book was plainly intended to cover a rather wide range of topics about heat engines in a rather popular fashion; equations were kept to a minimum and called for little more than simple algebra and arithmetic, except occasionally in the footnotes, where he indulged in a few arguments involving some calculus. He discussed the relative merits of air and steam as working fluids, the merits of various aspects of steam engine design, and even included some ideas of his own regarding possible improvements of the practical nature. The most important part of the book was devoted to an abstract presentation of an idealized engine that could be used to understand and clarify the fundamental principles that are generally applied to all heat engines, independent of their design.
Perhaps the most important contribution Carnot made to thermodynamics was his abstraction of the essential features of the steam engine, as they were known in his day, into a more general and idealized heat engine. This resulted in a model thermodynamic system upon which exact calculations could be made, and avoided the complications introduced by many of the crude features of the contemporary steam engine. By idealizing the engine, he could arrive at clear and indisputable answers to his original two questions.
He showed that the efficiency of this idealized engine is a function only of the two temperatures of the reservoirs between which it operates. He did not, however, give the exact form of the function, which was later shown to be (T1T2)T1, where T1 is the absolute temperature of the hotter reservoir. (Note: This equation probably came from Kelvin.) No thermal engine operating any other cycle can be more efficient, given the same operating temperatures.
The Carnot cycle is the most efficient possible engine, not only because of the (trivial) absence of friction and other incidental wasteful processes; the main reason is that it assumes no conduction of heat between parts of the engine at different temperatures. Carnot knew that the conduction of heat between bodies at different temperatures is a wasteful and irreversible process, which must be eliminated if the heat engine is to achieve maximum efficiency.
Regarding the second point, he also was quite certain that the maximum efficiency attainable did not depend upon the exact nature of theworking fluid. He stated this for emphasis as a general proposition: "The motive power of heat is independent of the agents employed to realize it; its quantity is fixed solely by the temperatures of the bodies between which the transfer of caloric takes place." For his "motive power of heat", we would today say "the efficiency of a reversible heat engine," and rather than "transfer of caloric" we would say "the reversible transfer of heat." He knew intuitively that his engine would have the maximum efficiency, but was unable to state what that efficiency would be.
He concluded:
The production of motive power is therefore due in steam engines not to actual consumption of caloric but to its transportation from a warm body to a cold body.
Carnot 1960, p. 7
and
In the fall of caloric, motive power evidently increases with the difference of temperature between the warm and cold bodies, but we do not know whether it is proportional to this difference.
Carnot 1960, p. 15

The Second Law of Thermodynamics 

In Carnot's idealized model, the caloric heat converted into work could be recovered by reversing the motion of the cycle, a concept subsequently known as thermodynamic reversibility. Nevertheless, Carnot further postulated that some caloric is lost and not converted into mechanical work. Hence, a real heat engine could not realize the Carnot cycle's reversibility and would consequently be less efficient.
Though formulated in terms of caloric, rather than entropy, this was an early rendition of the second law of thermodynamics.

Reception and later life 

Carnot’s book received very little attention from his contemporaries. The only reference to it within a few years after its publication was in a review in the periodical Revue Encyclopédique, which was a journal that covered a wide range of topics in literature. The impact of the work had only become apparent once it was modernized by Émile Clapeyron in 1834 and then further elaborated upon by Clausius and Kelvin, who together derived from it the concept of entropy and the second law of thermodymics.

Adiabatica


Cosmic Microwave Background Radiation
http://www.nicadd.niu.edu/~bterzic/PHYS652/Lecture_19.pdf  by Balša Terzić  
"The CMB radiation is a prediction of Big Bang theory. According to the Big Bang theory, the
early Universe was made up of a hot plasma of photons, electrons and baryons. The photons were
constantly interacting with the plasma through Thomson scattering. As the Universe expanded,
adiabatic cooling caused the plasma to cool until it became favorable for electrons to combine
with protons and form hydrogen atoms. This happened at around 3,000 K or when the Universe
was approximately 380,000 years old (z ≈ 1100). At this point, the photons scattered off the
now neutral atoms and began to travel freely through space. This process is called recombination
or decoupling (referring to electrons combining with nuclei and to the decoupling of matter and
radiation respectively). The photons have continued cooling ever since; they have now reached 2.725 K and their temperature will continue to drop as long as the Universe continues expanding. Accordingly,
the radiation from the sky that we measure today comes from a spherical surface, called the surface of last scattering. This represents the collection of points in space (currently around 46 billion light years from the Earth) at which the decoupling event happened long enough ago (less than 400,000 years after the Big Bang, 13.7 billion years ago) that the light from that part of space is just reaching observers."